首页|基于冬小麦高光谱图像的天然气微泄漏胁迫区域提取

基于冬小麦高光谱图像的天然气微泄漏胁迫区域提取

扫码查看
天然气在能源结构中逐渐占据重要地位.由于天然气管道和储气库常年埋藏于地下,无氧腐蚀、自然灾害、注入井和管道口松懈等因素会导致气体发生泄漏.在地下储存天然气大规模泄漏之前确定泄漏点的位置并做出早期判断和预警十分必要.以冬小麦为研究对象,采集4期高光谱图像数据,融合其图像、空间、时相特征,探寻天然气胁迫下冬小麦胁迫范围半径和时长之间的关系,并间接探测天然气微泄露点.一方面对连续统去除后的冬小麦高光谱图像数据进行连续小波变换并利用CWTmexh指数[CWTmexh=CW2770/(1-CW487)× CW550]对高光谱胁迫组图像进行微泄露点信息提取,另一方面提取高光谱图像数据的PCA特征,基于SVM分类器提取天然气胁迫区域.最后将天然气微泄露识别结果进行数学形态学分析,并利用最小二乘对胁迫区域进行圆曲线拟合,探索天然气泄漏胁迫半径与胁迫天数的关系.结果表明:(1)CWTmexh指数应用到成像高光谱数据表现出较好的识别性能;(2)SVM分类器可基于光谱差异性特征识别冬小麦胁迫区域,分类精度较好,最大分类精度可以达到99.25%,Kappa系数为0.97,且识别精度随天然气胁迫持续而增加;(3)冬小麦受胁迫区域半径和通气天数呈现强烈的线性相关.因此,结果表明,在冠层尺度和低空尺度通过高光谱遥感监测地表植被间接识别天然气微泄漏点具有可行性,可以预测地下天然气微泄漏随着时间变化引起的胁迫区域变化.该工作为星载高光谱遥感监测地下储存天然气泄漏点提供科学依据,为以后的工程应用提供技术支持.
Extraction of Natural Gas Microleakage Stress Regions Based on Hyperspectral Images of Winter Wheat
Natural gas has gradually occupied an important position in the energy structure.As natural gas pipelines and gas storage are buried underground all year round,oxygen-free corrosion,natural disasters,looseness of injection wells and pipelines,and other factors will lead to gas leakage.So,it is necessary to determine the location of leakage points and make early judgments and warnings before large-scale leakage from underground natural gas storage.This paper collected four periods of hyperspectral image data of winter wheat.It integrated the spatial-temporal-spectral features of hyperspectral data to explore the relationship between the radius and duration of winter wheat stress under natural gas stress,thus indirectly detecting the microleakage point of natural gas.On the one hand,the index CWTmexh(CW Tmexh=CW2770/(1-CW487)× CW550),constructed by continuous wavelet transform of the canopy spectra after continuum removal,was used to classify pixels into non-stress and stress with threshold segmentation.On the other hand,PCA features of hyperspectral image data are extracted,and natural gas stress regions are identified with the SVM classifier.Finally,the results of both threshold segmentation and SVM classification are analyzed by mathematical morphology,and the stress area is fitted with a circular curve using the least square to explore the relationship between the stress radius of natural gas leakage and the stress days.The results show that:(1)The CWTmexh index can be applied to imaging hyperspectral data,showing good recognition performance;(2)SVM classifier can recognize winter wheat stress areas based on spectral difference characteristics with good classification accuracy(i.e.,the maximum classification accuracy of 99.25%and kappa coefficient is 0.97)and the recognition accuracy increases with the continuation of natural gas stress;(3)There is a strong linear correlation between the radius of the stressed area and the ventilation days of winter wheat.Results of this study showed that it is feasible to indirectly identify natural gas micro-leakage points through hyperspectral remote sensing by monitoring surface vegetation at the canopy and low altitude scales and can predict time-dependent changes associated with underground natural gas micro leakage stress.The results can provide a theoretical basis for monitoring the leakage points of underground natural gas storage by spaceborne hyperspectral remote sensing and provide technical support for future engineering applications.

Natural gas micro-leakageWinter wheatHyperspectral imageSpatial characteristics

李辉、刘姁升、蒋金豹、陈绪慧、张帅、唐珂、赵新伟、杜兴强、玉龙飞雪

展开 >

中国四维测绘技术有限公司,北京 100086

鄂尔多斯应用技术学院,内蒙古鄂尔多斯 017000

中国矿业大学(北京)地球科学与测绘工程学院,北京 100083

生态环境部卫星环境应用中心,北京 100094

中国资源卫星应用中心,北京 100094

展开 >

天然气微泄漏 冬小麦 高光谱图像 空间特征

国家自然科学基金项目国家自然科学基金项目

4227138941571412

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(3)
  • 13