首页|基于岩石初分类体系的高光谱岩石分类研究

基于岩石初分类体系的高光谱岩石分类研究

Study on Hyperspectral Rock Classification Based on Initial Rock Classification System

扫码查看
高光谱遥感是当前遥感领域的前沿技术,具有多波段、高光谱分辨率等特征,越来越广泛地被应用于岩石的识别和分类.当下的高光谱的岩石分类研究中,很多岩石因为矿物成分相近导致光谱容易混淆,分类始终精度不高;并且在大范围的野外条件下进行高光谱岩性的研究存在许多外界环境的干扰,例如影像中出现地物覆盖、像元混杂等问题,因此有待对岩石光谱特性做进行进一步的研究,对光谱相近的岩石进行重新归类.从实验室高光谱遥感系统的角度,以81种常见的岩浆岩和变质岩样本的HySpex高光谱影像为研究数据,对影像进行反射率校正等预处理,结合ASD光谱仪测得的岩石样本光谱作为影像中对应样本光谱曲线提取的验证,提取得到代表每一岩石样本的光谱信息并对其进行光谱相似度初分类,最后得出以81块岩石岩本为基础的9个大类别和28个小类别的岩石初分类体系.初分类体系具有岩石样本在大类上成分性质以及光谱特征的相近,小类在大类的基础上光谱特征更为相近的特征.为了验证初步分类经验对计算机岩性分类的作用和效果,基于岩石样本初分类体系,利用最小噪声分离(MNF)技术进行高光谱影像的特征信息提取,设置两种分类方法,一种基于传统的分类,一种基于初分类模型,因此训练样本设置前者以每一块岩石作为样本,后者以初分类体系中的每小类作为样本,再应用计算机分类算法的模型使用最大似然法和随机森林分类两种方法,完成常见的岩浆岩和变质岩的高光谱影像分类.实验结果表明,基于传统模型的最大似然法和随机森林分类精度为83.21%和83.63%,而基于初分类的最大似然法分类和随机森林分类精度可以提高到85.46%和89.39%,随机森林分类器相比于传统的最大似然法更优越,而岩石初分类体系相比于简单的原始岩石分类具有一定的优越性,可为今后的岩石分类工作提供经验方法的借鉴.
Hyperspectral remote sensing is a cutting-edge technology in remote sensing,which has the characteristics of multi-band and high spectral resolution,so it is increasingly widely used in rock identification and classification.In the current study of hyperspectral rock classification,many rocks are easily confused because of their similar mineral composition,and the classification accuracy is not always high.In the study of high spectral lithology in a wide range of field conditions,there is a lot of interference from the external environment,such as ground cover,pixel mixing and so on,so the spectral characteristics of rocks need to be further studied.The rocks with similar spectra are reclassified.In this study,from the point of view of the laboratory hyperspectral remote sensing system,the HySpex hyperspectral images of 81 common magmatic and metamorphic rock samples were taken as the research data images,and the images were preprocessed such as reflectance correction.Combined with the spectra of rock samples measured by ASD to verify the extraction of corresponding sample spectral curves in the images,the spectral information representing each rock sample was extracted,and the spectral similarity was classified.Finally,the preliminary classification system of 9 large and 28 small categories based on 81 rock samples is obtained.The initial classification system has similar composition properties and spectral characteristics of rock samples in large classes.The spectral characteristics of small classes are more similar than those of large classes.In order to verify the effect of preliminary classification experience on computer lithology classification,the follow-up study is based on the initial classification system of rock samples,and the minimum noise separation technique is used to extract the feature information of hyperspectral images.Finally,the computer classification algorithm model uses the maximum likelihood method and random forest classification,and the training samples set each rock as a single rock book and each subclass in the initial classification system as a sample.Complete the hyperspectral image classification of common magmatic and metamorphic rocks.The experimental results show that the accuracy of maximum likelihood method and random forest classification based on traditional model is 83.21%and 83.63%,while the accuracy of maximum likelihood classification and random forest classification based on initial classification can be improved to 85.46%and 89.39%.Random forest classifier is superior to the traditional maximum likelihood method,while the rock primary classification system has some advantages compared with simple original rock classification.It can be used as a reference for future rock classification work.

Hyperspectral remote sensingSpectral characteristicsLithological classification

胡程浩、吴文渊、苗莹、许林霞、傅显浩、郎夏祎、何博闻、钱俊锋

展开 >

杭州师范大学信息科学与技术学院,浙江杭州 311100

浙江省城市湿地与区域变化研究重点实验室,浙江杭州 311100

中国煤炭地质总局浙江煤炭地质局,浙江杭州 310017

浙江省地质矿产研究所,浙江杭州 310000

展开 >

高光谱遥感 光谱特征 岩性分类

国家自然科学基金项目浙江省自然科学基金项目浙江省公益研究计划项目

41402304LQ13D020002GF19D020002

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(3)
  • 34