首页|混合卷积神经网络用于高光谱小麦品种鉴别

混合卷积神经网络用于高光谱小麦品种鉴别

Mix Convolutional Neural Networks for Hyperspectral Wheat Variety Discrimination

扫码查看
不同品种的小麦满足了市场的不同需求,同时也会带来小麦品种混杂的风险.为了提高小麦品种的纯度进而提高选种、育种、加工等环节的经济价值,小麦种子的鉴别起到关键作用.传统的小麦品种纯度理化分析鉴别方法,鉴定时间长且破坏种子,已不能满足现代农业的迫切需要.高光谱成像作为近年来发展迅速的一种快速、高效、无损的新型鉴别技术,在种子品种鉴别领域取得了显著成效.然而,已有的大多数高光谱分类方法仅利用光谱信息,没有充分考虑空间信息,分类效果较差.为了解决上述问题,利用高光谱成像设备采集8个品种的小麦种子正背面的高光谱图像,基于这些高光谱数据集,提出一种基于注意力机制的混合卷积神经网络的高光谱小麦品种鉴别方法,主要利用三维卷积和二维卷积的互补优势特性提取小麦的有价值特征,进而提高小麦品种的鉴别效果.具体而言,首先提取小麦品种的感兴趣区域,并利用多元散射校正方法削弱由于散射水平差异带来的同一品种的光谱差异.同时,利用主成分分析方法减少三维数据的无用光谱波段,进而保留并压缩对鉴别小麦品种有价值的特征.随后,利用三维卷积获取空间维度和不同光谱间的特征信息,二维卷积获取空间信息和图像的自身固有的特征信息,并在二维卷积模型中引入注意力机制进一步增强图像的特征信息的提取.最后在全连接层实现同一区域不同小麦品种的鉴别.实验表明,所提出的方法比其他方法具有较好的分类性能,分类准确率达97.92%.此外,所提出的方法对小样本数据也具有较好的分类性能.总的来说,提出的方法对于高光谱小麦种子鉴别具有较好的有效性和鲁棒性,为小麦种子的在线鉴别提供了一种新的方法.
Different varieties of wheat meet the market's diverse needs,but it also brings the risk of mixed wheat varieties.To improve the purity of wheat varieties and thus the economic value of the selection,breeding,and processing,the identification of wheat seeds plays a key role.Traditional methods of physical and chemical analysis of wheat variety purity take a long time to identify and destroy seeds,which can no longer meet the urgent needs of modern agriculture.Hyperspectral imaging is a new,fast,efficient,and nondestructive identification technique that has achieved remarkable results in seed variety identification.Unfortunately,most existing methods use only spectral information without considering spatial information sufficiently to produce unsatisfactory classification results.A hyperspectral imaging device was used to acquire hyperspectral images of the front and back of wheat seeds of eight varieties in the paper.Meanwhile,we propose a hyperspectral wheat variety identification method based on a hybrid convolutional neural network with an attention mechanism,which mainly uses the advantageous complementary features of 3D convolution and 2D convolution to extract valuable features of wheat for driving the identification of wheat varieties.Precisely,we first extract the regions of interest of wheat varieties and use multiple scattering correction methods to weaken the spectral differences of the same variety due to differences in scattering levels.Meanwhile,we use principal component analysis to reduce the useless spectral bands of 3D data and thus retain and compress the valuable features for identifying wheat varieties.Subsequently,a 3D convolution module acquires spatial dimension and feature information between different spectra,a 2D convolution module is used to obtain spatial features and the image's inherent feature information,and an attention mechanism is introduced into the 2D convolution model to refine the features.Finally,the identification of different wheat varieties in the same region is achieved at the fully connected layer.Extensive experiments on our collected dataset show that the proposed method performs better than the state-of-the-art methods,and its classification accuracy reaches 97.92%.Besides,the proposed method has better classification performance for a small sample.In short,the proposed method has good effectiveness and robustness for hyperspectral wheat seed identification and provides a new method for the online identification of wheat seeds.

Hyperspectral imagingWheat varietiesAttention mechanismMixed convolution

李国厚、李泽旭、金松林、赵文义、潘细朋、梁政、秦莉、张卫东

展开 >

河南科技学院信息工程学院,河南新乡 453003

北京邮电大学人工智能学院,北京 100876

桂林电子科技大学计算机与信息安全学院,广西桂林 541004

安徽大学互联网学院,安徽合肥 230039

宁波大学信息科学与工程学院,浙江宁波 315211

展开 >

高光谱成像 小麦品种 注意力机制 混合卷积

国家自然科学基金项目河南省科技攻关项目山区桥梁及隧道工程国家重点实验室开放基金项目浙江省自然科学基金项目

62002082232102210058SKLBT-2108LQ21E080005

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(3)
  • 28