首页|一个预测紫叶生菜花青素含量的高光谱深度学习模型

一个预测紫叶生菜花青素含量的高光谱深度学习模型

扫码查看
紫叶生菜叶片内富含花青素、胡萝卜素、维生素、矿物质等元素,其中花青素作为叶片组织中的主要色素对植物提供多种修复及保护功能,其含量可反应紫叶生菜的生理状态,因此其高精度预测具有现实意义.为了高效、准确地估算紫叶生菜的花青素含量,采集了紫叶生菜的高光谱数据并开展了高精度建模研究.对原始平均反射光谱数据进行了一阶导数(FD)、二阶导数(SD)、标准正态变换(SNV)、S-G滤波和多元散射校正(MSC)五种预处理操作,基于不同预处理光谱建立紫叶生菜花青素含量的偏最小二乘回归(PLSR)模型并进行性能对比,确定MSC为理想的光谱预处理方法.针对原始光谱及经MSC预处理的光谱,使用竞争自适应重加权采样(CARS)算法分别选择特征波段,基于全波段(原始光谱、经MSC预处理光谱)和特征波段(基于原始光谱的特征波段、基于MSC预处理光谱的特征波段)分别构建PLSR模型,表现最佳的MSC-CARS-PLSR在验证集上的决定系数(R2)和均方根误差(RMSE)分别为0.872和0.070 mg·L-1,剩余预测偏差(RPD)为2.862.为进一步提高预测精度,本文提出一种融合深度卷积特征和极限学习机(ELM)的回归分析框架Ensemble,基于改进的Inception模块设计了与输入光谱信号匹配的一维卷积神经网络(1DCNN)作为特征提取器,采用ELM代替全连接层作为高级回归器对提取的特征进行计算.通过对比分析,Ensemble性能优于单独的1DCNN模型、ELM模型以及基于预处理光谱构建的最佳PLSR模型,其在验证集上的R2和RMSE分别为0.905和0.060 mg·L-1,RPD为3.319,表现出较高预测精度以及极佳的稳定性.进一步分析了预处理操作对Ensemble预测精度的影响,实验结果显示Ensemble对于预处理操作的依赖程度远小于PLSR,表明该模型同时继承了 1DCNN的深度特征表示和ELM的高泛化性,能够实现基于原始光谱进行端到端的高精度花青素含量预测,为及时、准确掌握紫叶生菜长势情况提供了理论支撑.
A Hyperspectral Deep Learning Model for Predicting Anthocyanin Content in Purple Leaf Lettuce
The leaves of purple leaf lettuce are rich in anthocyanins,carotene,vitamins,minerals and other elements.Among them,anthocyanin,as the main pigment in the leaf tissue,provides a variety of repair and protection functions for the plants,and its content can reflect the physiological state of purple leaf lettuce,so that the high-accuracy prediction of anthocyanin content has practical significance.In order to efficiently and accurately estimate the anthocyanin content of purple-leaf lettuce,this paper collected hyperspectral data from purple-leaf lettuce and carried out high-precision modeling research.Five preprocessing operations,first derivative(FD),second derivative(SD),standard normal variate transformation(SNV),S-G filter and multiple scattering correction(MSC),were performed on the original average reflectance spectral data.Based on different pretreatment spectra,the partial least squares regression(PLSR)model of anthocyanin content in purple leaf lettuce was established,five preprocessing performances were compared,and MSC was illustrated as the ideal spectral pretreatment method.The competitive Adaptive Reweighted Sampling(CARS)algorithm was used to select characteristic wavebands for the original spectra and the spectra preprocessed by MSC.Based on the full band(original spectra,MSC preprocessed spectra)and characteristic wavebands based on the original spectraand the MSC preprocessed spectra separately),the PLSR model was constructed respectively,the coefficient of determination(R2)and root mean square error(RMSE)of the best-performing MSC-CARS-PLSR on the validation set were 0.872 and 0.070 mg·L-1,respectively,and the residual prediction deviation(RPD)was 2.862.In order to improve the prediction accuracy further,this paper proposes a regression analysis framework marked as Ensemble that integrates deep convolutional features and extreme learning machines(ELM).Based on the improved Inception module,a one-dimensional convolutional neural network(1DCNN)matching the input spectral signal is designed as a feature extractor.ELM is used as an advanced regressor to replace a fully connected layer to calculate the extracted features.Through comparative analysis,the performance of Ensemble is better than that of a single 1DCNN model,ELM model and the best PLSR model based on preprocessed spectra,and its R2 and RMSE on the validation set were 0.905 and 0.060 mg·L-1,respectively,and the RPD was 3.319,showing high prediction accuracy and excellent stability.The impact of preprocessing operations on the prediction accuracy of Ensemble is further analyzed.The experimental results show that Ensemble is much less dependent on preprocessing operations than PLSR,indicating that the model inherits the deep feature representation of 1DCNN and the high generalization of ELM at the same time,and can realize end-to-end high-precision prediction of anthocyanin content based on the original spectrum,which provides theoretical support for timely and accurate grasp of the growth situation of purple leaf lettuce.

Purple leaf lettuceAnthocyaninsHyperspectralPartial least squares regressionDeep learning

张美玲、陈勇杰、王敏娟、李民赞、郑立华

展开 >

"智慧农业系统集成研究"教育部重点实验室,中国农业大学,北京 100083

紫叶生菜 花青素 高光谱 偏最小二乘回归 深度学习

国家重点研发计划项目

2022YFD2002202

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(3)
  • 21