首页|LASSO-LSSVM与激光诱导击穿光谱技术结合提高铝合金中Mn成分检测精度研究

LASSO-LSSVM与激光诱导击穿光谱技术结合提高铝合金中Mn成分检测精度研究

扫码查看
铝合金作为一种重要的航空航天装备材料,其元素含量是决定铝合金材料质量和性能的关键因素,其组成成分的多样性对铝合金的铸造、冶炼以及回收分类有较大的影响,其中Mn是铝合金中的重要元素,能够止铝合金的再结晶过程,提高再结晶温度.铝合金成分的定量测定是合金成分在线检测的重要组成部分.信号波动(激光能量波动、等离子体不稳定性、样品不均匀性等)和自吸收效应对激光诱导击穿光谱(LIBS)技术测定铝合金中微量元素有一定影响.为了消除自吸收效应和信号波动所引起的偏差,提出了一种利用LIBS技术结合LASSO-LSSVM机器学习法检测铝合金材料中微量元素含量的新方法.利用最小绝对收缩和选择算子(LASSO)模型对光谱特征向量进行选择,降低光谱数据的维度从而与训练样本相匹配,降低了过拟合风险,有效提取表征LIBS光谱最重要的特征.利用最小二乘支持向量机(LSSVM)模型对LASSO所选择的特征光谱进行训练,分析结果与内标法和偏最小二乘回归(PLSR)相比,LASSO-LSSVM回归模型的精度和准确性都有所提高,其中,Mn元素回归曲线的相关系数(R2)从74.62%提高到99.29%,平均相对误差(ARE)从22.38%降低到3.56%,训练集均方根误差(RMSEC)从0.66 wt%降低到0.040 wt%,测试集均方根误差(RMSEP)从0.58 wt%降低到0.042 wt%.LASSO-LSSVM回归模型适用于复杂、不确定性较高的高维光谱数据,能够大大降低输入光谱数据的维数和冗余信息,因此,该模型减少了LSSVM的过拟合问题.研究结果表明,LIBS技术和LASSO-LSSVM回归模型的结合可以有效改善LIBS技术对于铝合金材料的定量分析性能,是一种简单、可靠、高精度检测合金含量的新方法.
Accuracy Improvement of Mn Element in Aluminum Alloy by the Combination of LASSO-LSSVM and Laser-Induced Breakdown Spectroscopy
Aluminum alloy is an important aerospace equipment material,and its element content is an important factor determining the quality and performance of aluminum alloy materials.The Mn is an important element in aluminum alloy,which can stop the recrystallization process of aluminum alloy and increase the recrystallization temperature.Quantitative determination of aluminum alloy composition is an important part of on-line detection of alloy composition.The signal fluctuation(laser energy fluctuation,plasma instability,sample inhomogeneity,etc.)and self-absorption effect influence the determination of trace elements in aluminum alloys by laser-induced breakdown spectroscopy(LIBS).In order to eliminate the bias caused by the self-absorption effect and signal fluctuation,a new method for detecting alloy content using LIBS technology combined with the LASSO-LSSVM machine learning method is proposed.The Least Absolute Shrinkage and Selection Operator(LASSO)model is used to select the spectral eigenvectors,reducing the dimension of the spectral data to match the training samples,reducing the risk of overfitting,and effectively extracting the most important features that characterize LIBS spectra.The Least squares support vector machine regression(LSSVM)model is used to train the characteristic spectra selected by LASSO.Compared with the internal standard method and partial least squares regression(PLSR),the analysis results show that the model accuracy and accuracy of LASSO-LSSVM were improved.The Mn element regression curve's correlation coefficient(R2)of Mn element regression curve increased from 74.62%to 99.29%.The mean relative error(ARE)decreased from 22.38%to 3.56%,the root mean square error(RMSEC)of the training set decreased from 0.66 wt%to 0.040 wt%,and the root mean square error(RMSEP)of the test set decreased from 0.58 wt%to 0.042 wt%.The LASSO-LSSVM regression model is suitable for complex and high-dimensional spectral data with high uncertainty,and can greatly reduce input spectral data's dimension and redundant information.Therefore,the model reduces the overfitting problem of LSSVM.The results show that LIBS technology and the LASSO-LSSVM regression model can effectively improve the quantitative analysis performance of aluminum alloy materials by LIBS technology,which is a simple,reliable and high-precision method to detect alloy content.

Laser-induced breakdown spectroscopyAluminum alloyLASSO-LSSVMQuantitative analysis

戴宇佳、高勋、刘子源

展开 >

浙江农林大学光机电工程学院,浙江杭州 311300

长春理工大学物理学院,吉林长春 130022

激光诱导击穿光谱 铝合金 LASSO-LSSVM 定量分析

国家自然科学基金浙江农林大学科研发展基金

615750302022LFR050

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(4)
  • 21