首页|红外光谱的不同产地黑果腺肋花楸果实鉴别

红外光谱的不同产地黑果腺肋花楸果实鉴别

扫码查看
黑果腺肋花楸是已被列入新食品原料名单中的小浆果,富含花青素等成分,在酒类、饮料、功能食品、化妆品等领域广泛应用,具有较高的经济价值.因受不同产地气候等环境因素及种植条件的影响,黑果腺肋花楸果实品质差异明显.为规范黑果腺肋花楸果品市场管理,以中红外光谱技术结合化学计量学方法对不同产地黑果腺肋花楸果实进行鉴别.采集15个产区共750份黑果腺肋花楸果实红外光谱数据,采用K-S样本划分法,按4:1比例将样本划分为训练集和测试集,并进行多元散射校正(MSC)、标准正态化(SNV)、移动平滑(SG)、一阶导数(FD)、二阶导数(SD)等光谱预处理,与原始光谱进行支持向量机(SVM)建模识别效果对比,确定最佳光谱预处理方法,同时对最佳光谱数据进行归一化处理.采用竞争性自适应重加权算法(CARS)和连续投影算法(SPA)提取光谱特征信息,并结合随机森林(RF)、极限学习机(ELM)、支持向量机(SVM)、偏最小二乘-判别分析(PLA-DA)进行建模对比,确定最佳模型.结果表明,MSC为最佳光谱预处理方法,MSC-SVM训练集识别率为93.33%,测试集识别率为92.67%,能有效减少光谱采集时产生的随机误差.经CARS、SPA提取MSC特征光谱波长,进行4种算法的建模结果对比,确定SPA-SVM模型为最佳识别模型,其训练集与测试集识别率均为100%,且仅需16个波长点即可完成准确识别.红外光谱结合化学计量学方法,尤其是SPA-SVM模型,可准确鉴别黑果腺肋花楸果实产地,为黑果腺肋花楸果实产地溯源、质量评价提供快速、简便的方法支撑,为打造地区特色品牌提供技术基础.
Identification of Aronia Melanocarpa Fruits From Different Areas by Mid-Infrared Spectroscopy
A ronia melanocarpa is a small berry listed in the list of new food raw materials,rich in anthocyanins and other ingredients,which has been widely used in alcohol,beverages,functional food,cosmetics and other fields,with high economic value.Due to the influence of environmental factors such as climate and planting conditions in different areas,the fruit quality of A.melanocarpa is significantly different.Therefore,to standardize the market management of A.melanocarpa fruit,the fruit of A.me l anocarp a from different places of origin was identified by mid-infrared spectroscopy combined with chemometrics.750 infrared spectral data of A.melanocarpa fruit from 15 production areas were collected.After spectral pretreatments,such as multiple scattering corrections(MSC),standard normalization(SNV),moving smoothing(SG),first derivative(FD),second derivative(SD),and so on,the optimal spectral pretreatment method was determined by comparing the recognition effect of support vector machine(SVM)modeling with the original spectrum.The K-S sample division method divides the samples into training sets and test sets at a ratio of 4:1,and then the samples are normalized.The competitive adaptive reweighting algorithm(CARS)and continuous projection algorithm(SPA)are used to extract the spectral feature information,and the best model is determined by modeling and comparing with random forest(RF),extreme learning machine(ELM)and support vector machine(SVM).The results show that MSC is the best spectral preprocessing method;the recognition rate of the MSC-SVM training set is 93.33%,and the recognition rate of the test set is 92.67%,which can effectively reduce the random error generated during spectral acquisition.After extracting the MSC characteristic spectral wavenumber by CARS and SPA,the modeling results of the three algorithms are compared,and the SPA-SVM model is determined to be the best recognition model.The recognition rate of its training set and test version is 100%,and only 16 wavelength points are needed to complete the accurate recognition.Therefore,the combination of mid-infrared spectroscopy and chemometrics,especially SPA-SVM model,can accurately identify the origin of A.melanocarpa fruit,provide a fast and simple method support for the origin traceability and quality evaluation of A.melanocarpa fruit,and provide a technical basis for building a unique brand with regional characteristics.

A ronia melanocarpaInfrared spectroscopyOrigin identificationSupport vector machine

杨承恩、李萌、王天赐、王金玲、李雨婷、苏玲

展开 >

吉林农业大学食药用菌教育部工程研究中心,吉林长春 130118

吉林农业大学生命科学学院,吉林长春 130118

长春职业技术学院现代农学系,吉林长春 130504

国药一心制药有限公司质检部,吉林长春 130600

展开 >

黑果腺肋花楸 红外光谱 产地鉴别 支持向量机

吉林省教育厅科学技术研究项目国家重点研发计划国家重点研发计划

JJKH20220324KJ2018YFD10010012018YFE0107800

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(4)
  • 15