首页|最优光谱特征变量反演颗粒物污染生菜的生理信息

最优光谱特征变量反演颗粒物污染生菜的生理信息

扫码查看
叶类蔬菜的品质和产量与其净光合速率息息相关,秋冬季节受颗粒物污染的影响,温室大棚内叶菜的光合作用受到制约,对生理信息的准确预测不利.以采收期生菜为试验对象,研究其在颗粒物污染生长环境下,基于高光谱技术建立并对比生菜净光合速率的反演模型的最优方法.获得生菜的净光合速率和高光谱数据;选取比值植被指数(RVI)、差值植被指数(DI)、归一化植被指数(NDVI)、可视化气压阻抗指数(VARI)、再归一化植被指数(RDVI)、垂直植被指数(PVI)和植被衰减指数(PSRI)的原始和一阶变换共14个光谱植被指数;用相关矩阵法优选出最优波长位置,而非选择既有的固定波长,计算得到最优植被指数,与光谱位置变量(红边幅值,Dr)及光谱面积变量,即红边面积(SDr)、红边面积与蓝边面积的比值(SDr/SDb)、红边面积与黄边面积的比值(SDr/SDy)共同作为光谱特征变量,建立颗粒物污染环境下生菜净光合速率的反演模型.采用多项式拟合和多元散射校正(MSC)、标准正态变量变换(SNV)、偏最小二乘(PLS)和主成分回归(PCR)光谱建模组合方法进行反演预测结果比较.研究结果表明:最优波长位置的PSRI(515,499)和DI(515,499)与净光合速率的相关性最大,可以反映颗粒物污染下生菜的更多生理信息,采用光谱预处理建模组合方法按精度从高到低排序为:SG+MSC+PCR>SG+SNV+PLS>SG+SNV+PCR>SG+MSC+PLS,其中,SG+MSC+PCR组合建模方法的精度最高,决定系数为Rc=0.901 1,Rp=0.945 8,基于最优光谱植被指数建模效果最佳;光谱面积变量(SDr/SDb)的拟合精度最高(R2=0.936 5),可以实现生菜净光合速率的可靠预测,是基于光谱位置变量和面积变量建立生菜净光合速率的最优方法.该工作对颗粒物污染环境下利用高光谱技术进行植物的生理信息反演研究具有一定参考价值.
Inversion of Physiological Information of Lettuce Polluted by Particulate Matter Based on Optimal Spectral Characteristic Variables
The quality and yield of leafy vegetables are closely related to the net photosynthetic rate.Affected by particulate matter pollutionespecially in autumn and winter,the photosynthesis of leafy vegetables in greenhouses is restricted,which is unfavorable for accurate prediction of physiological information.Under the growth environment of particle pollution,The lettuce during the harvest period was the test object.The optimal method for establishing the inversion model of lettuce net photosynthetic rate based on hyperspectral technology was studied.The net photosynthetic rate and hyperspectral data of lettuce were Obtained.The Ratio Vegetation Index(RI),Difference Vegetation Index(DI),Normalized Difference Vegetation Index(NDVI),visualization Visualize Atmospherically Resistive Vegetation Index(VARI),Renormalized Difference Vegetation Index(RDVI),Perpendicular Vegetation Index(PVI)and Vegetation Attenuation Index(PSRI),were selected.The original and first-order transformations of the 14 spectral vegetation indices were studied.The correlation matrix method was used to optimize the optimal vegetation index,which was related to the spectral position variable(Red edge magnitude,Dr)and spectral area variables,namely red edge area(SDr),the ratio of red edge area to blue edge area(SDr/SDb),the ratio of red edge area to yellow edge area(SDr/SDy)as spectral feature variables.The inversion model of the net photosynthetic rate about lettuce was established by using a combination of polynomial fitting and multivariate scatter correction(MSC),standard normal variable transformation(SNV),partial least squares(PLS)and principal component regression(PCR).The results showed that PSRI(515,499)and DI(515,499)at the optimal wavelength position had the greatest correlation with net photosynthetic rate,which could reflect more physiological information of lettuce under particulate pollution.The combined modeling method of SG+MSC+PCR had the highest accuracy,the coefficient of determination Rc was 0.901 1,and the Rp was 0.945 8.The modeling effect based on the optimal spectral vegetation index was the best.The spectral area variable SDr/SDb had the highest fitting accuracy(R2=0.936 5),which could reliably predict the net photosynthetic rate of lettuce.It was the optimal method to establish the net photosynthetic rate of lettuce based on the spectral position and area variables.This work could provide a certain reference value for the inversion of plant physiological information using hyperspectral technology under a particulate pollution environment.

Particulate matterOptimal spectral indexCharacteristic variableNet photosynthetic rateModeling inversion

孔丽娟、隋媛媛、刘爽、陈丽梅、周丽娜、刘春慧、姜玲、李松、于海业

展开 >

吉林农业大学工程技术学院,吉林长春 130022

吉林大学生物与农业工程学院,吉林长春 130000

吉林农业大学园艺学院,吉林长春 130022

颗粒物 最优光谱指数 特征变量 净光合速率 建模反演

国家自然科学基金青年科学基金吉林省重点研发计划

3200141820200402015NC

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(4)
  • 13