首页|激光诱导击穿光谱技术对水稻产地识别研究

激光诱导击穿光谱技术对水稻产地识别研究

扫码查看
水稻是中国主要粮食作物,而水稻品质与其生长的外部环境如土壤特性、气候、日照时间和灌溉水等环境息息相关,高品质水稻的产地区域面积有一定地域限制,因此水稻可看成为是一个明显的地理标志物.市场常出现一些假冒或者贴牌的知名优质水稻出售,损害了水稻品牌,降低了消费者的水稻品质保障,并且扰乱了市场稳定性,因此对于水稻产地快速识别技术的需求十分迫切.利用LIBS结合机器学习算法,对吉林省5个产地(大安、公主岭、前郭、松原、洮儿河)的水稻进行产地识别,建立了主成分分析(PCA)算法分别结合 Bagged Trees、Weighted KNN、Quadratic SVM 和 Coarse Gaussian SVM 共四种机器学习算法的水稻产地识别模型.实验选取了 5个水稻产地共450组在200~900 nm的LIBS数据,对水稻LIBS光谱数据采用卷积平滑(S-G平滑)进行降噪和特征谱线归一化预处理,对水稻LIBS光谱数据进行主成分分析,实现了水稻产地具有较好的聚类空间集群分布,但部分水稻产地存在空间重叠.采用5倍交叉验证,采用PCA-Bagged Trees、PC A-Weighted KNN、PCA-Quadratic SVM 和 PCA-Coarse Gaussian SVM 共四种机器学习模型,水稻产地的识别精度均达到91.8%以上,并且PCA-Quadratic SVM模型的识别精度高达97.3%.结果表明结合LIBS技术和机器学习算法能够高精度和高效率实现水稻产地的识别.
Identification of Rice Origin Using Laser-Induced Breakdown Spectroscopy
Rice is the primary grain crop in China,and the quality of rice is closely related to the external environment,such as soil characteristics,climate,sunshine time,and irrigation water.The high-quality rice-origin area has certain regional limitations.Therefore,the rice can be seen as an apparent geographical marker.There are often some counterfeits or branded famous high-quality rice in the market,which can damage the rice brand,reduce the rice quality guarantee of consumers,and disturb the market stability,so rapid identification technology of rice origin is needed.The rice origin identification models of five sources in Jilin Province(Daan,Gongzhuling,Qianguo,Songyuan and Taoerhe)are done by laser-induced breakdown spectroscopy and machine learning algorithms.The principal component analysis(PCA)algorithm,combined with four machine learning algorithms,Bagged Trees,Weighted KNN,Quadratic SVM,and Coaster Gaussian SVM,has been established.A total of 450 groups of LIBS data are selected.The spectral data of rice LIBS are pretreated with Savitzky-Golay smoothing(S-G smoothing)for noise reduction and normalisation.The principal component analysis uses the rice LIBS data,which shows that the rice origins had an excellent cluster distribution of clustering spaces.Still,there is spatial overlap in some rice origins.Utilising5x cross-validation,the identification accuracy of rice origins can reachmore than 91.8%by adopting PCA-Bagged Trees,PCA-Weighted KNN,PCA-Quadratic SVM and PCA-Coarse Gaussian SVM,and the recognition accuracy of PCA-Quadratic SVM model is as high as 97.3%.The results show that the combination of LIBS technology and machine learning algorithms can identify rice origin with high precision and high efficiency.

Laser-induced breakdown spectroscopyMachine learning algorithmsIdentification of rice production areasIdentification accuracy

宋少忠、符少燕、刘园园、齐春艳、李景鹏、高勋

展开 >

吉林工程技术师范学院数据科学与人工智能学院,吉林长春 130052

长春理工大学物理学院,吉林长春 130022

吉林省农业科学院水稻研究所,吉林长春 130033

中国科学院东北地理与农业生态研究所,吉林长春 130102

展开 >

激光诱导击穿光谱 机器学习算法 水稻产地识别 识别精度

国家自然科学基金吉林省科技厅项目吉林省科技厅项目吉林省发改委项目

615750302020122348JC20200602054ZP2020C019-6

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(6)
  • 16