首页|一种融合叶绿素荧光技术与可见-近红外光谱的番茄幼苗热胁迫无损检测方法

一种融合叶绿素荧光技术与可见-近红外光谱的番茄幼苗热胁迫无损检测方法

扫码查看
全球气温上升导致高温天气频发,番茄作为温度敏感型植物更易发生热胁迫,最终导致产量损失.在植物热胁迫检测中,温度通常被用作标定其受胁迫程度的依据,但由于不同植株个体的耐热性和自身健康状态存在差异,同一温度下的植株可能会产生不同程度热胁迫症状,以温度来标定热胁迫状态可能会导致误判.以番茄幼苗为研究对象,提出了一种融合叶绿素荧光技术与可见-近红外光谱的番茄幼苗热迫胁程度快速分类方法,以提高对番茄热胁迫程度评估的准确性.采集了对照组植株和热胁迫植株的叶绿素荧光参数与可见-近红外光谱数据,以叶绿素荧光参数为热胁迫评价指标,结合k-means++聚类算法评估了番茄幼苗受热胁迫影响的严重程度,通过对标定后样本的叶绿素荧光参数和植物逆境胁迫相关生理量进行分析,验证了标定结果的合理性.以聚类模型输出为依据对光谱数据进行标定,采用3种预处理方法及其组合,结合3种特征波长提取算法对光谱数据进行处理,获得了 6个与样本热胁迫程度相关的特征波段.最后以6个特征波段为输入,热胁迫程度为输出,基于4种机器学习算法构建分类模型,实现了对样本热胁迫程度的分类.结果表明:样本叶绿素荧光参数Fv/Fm,Fv/Fo,NPQ,Y(NPQ)和Y(NO)与其胁迫状态存在显著的中高度相关,依据以上参数将所有样本标记为无胁迫,轻度热胁迫和重度热胁迫三类.三类样本的叶绿素荧光参数、丙二醛(MDA)含量以及光合色素含量均表现出了组间显著差异,聚类结果合理.基于聚类结果对光谱数据进行标定,根据标定结果提取光谱特征波长,99%以上的冗余特征被消除,进一步筛选获得了6个用建立分类模型的特征波长.在建立的4个模型中,线性判别分析(LDA)模型具有最优性能,其测试集分类准确率为92.45%,F1分数为0.929 1,AUC为0.9780.结果表明,采用叶绿素荧光技术结合可见-近红外光谱技术检测热胁迫是可行的,该研究为热胁迫的快速检测、耐热性快速筛选以及高温灾害预警提供了一种有效方法.
A Nondestructive Method Combined Chlorophyll Fluorescence With Visible-NIR Spectroscopy for Detecting the Severity of Heat Stress on Tomato Seedlings
Heat stress can inhibit the growth of tomato seedlings and lead to yield loss.Temperature is often used as an indicator to evaluate the impact of plant heat stress.However,due to the difference between individual plant heat tolerance and their health status,plants under the same temperature may show different heat stress symptoms,which could lead to misclassification.Therefore,combined with chlorophyll fluorescence technology and visible near-infrared spectroscopy,this paper proposes a classification method for tomato seedlings'heat stress severity.The chlorophyll fluorescence parameters and visible near-infrared(Vis-NIR)spectrum data of the controlled and heat-stressed plants were collected.Using multiple chlorophyll fluorescence parameters as indicators,a clustering model based on the k-means++algorithm was established to obtain the classification labels on the severity of heat stress.The reasonableness of the clustering result was verified by analyzing the difference between the chlorophyll fluorescence parameters and the biochemical indicators among the three samples.Then,the spectral data were labelled based on the output of the clustering model;six characteristic bands highly related to the sample's heat-stress severity were extracted using three preprocessing methods and their combinations,combined with three characteristic wavelength selection algorithms.With six characteristic bands as input and the heat-stress-severity as output,classification models are established based on four machine learning algorithms to classify the heat-stress-severity.The results showed that The chlorophyll fluorescence parameters Fv/Fm,Fv/Fo,NPQ,Y(NPQ)and Y(NO)showed significant moderate to high correlation with their heat stress status,and the samples were labelled as non-heat-stressed samples,mild heat-stressed samples and severe heat-stressed samples based on the five parameters.After feature extraction,more than 99%of redundant features are eliminated,and only six characteristic wavelengths remain.Characteristic wavelengths that can be used to establish classification models are obtained.The LDA model performs best among the four models,with a classification accuracy of 92.45%,an F1 score of 0.929 1,and an AUC of 0.978 0.The results indicate that using chlorophyll fluorescence technology combined with Vis-NIR technology to detect heat stress is feasible.This study provides an effective method for rapidly detecting heat stress,rapid screening of heat tolerance in plants and early warning of heat stress.

Heat stressChlorophyll fluorescencek-means++algorithmVisible-near-infrared spectroscopyClassification model

魏子朝、卢苗、雷文晔、王浩宇、魏子渊、高攀、王东、陈煦、胡瑾

展开 >

西北农林科技大学机械与电子工程学院,陕西杨凌 712100

农业农村部农业物联网重点实验室,陕西杨凌 712100

热胁迫 叶绿素荧光 k-means++算法 可见-近红外光谱 分类模型

国家重点研发计划陕西省重点研发计划

2020YFD11006022021ZDLNY03-02

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(6)
  • 23