首页|并联卷积神经网络的近红外光谱定量分析模型

并联卷积神经网络的近红外光谱定量分析模型

扫码查看
近红外光谱分析已成为工农业生产过程质量监控领域中不可或缺的重要分析手段之一,在食品、农业、医药等定性定量分析领域被广泛应用.预测精度高、运行速度快、泛化能力强的近红外光谱预测模型可用于不同物质的定性定量分析.但由于近红外光谱数据量的激增,传统的近红外光谱建模方法已经出现明显的不足.随着人工智能技术的不断发展,深度学习算法在近红外光谱分析领域得到了广泛应用.提出了一种基于并联卷积神经网络的近红外光谱定量分析模型(PaBATunNet).该模型由1个一维卷积层、1个并联卷积模块(Module)、1个展平层、4个全连接层和1个参数调节器(PR)组成,Module模块包括5个子模块分别对光谱数据进行线性及非线性多维特征提取,并通过Concatenate函数将提取后的光谱特征数据进行拼接,PR模块通过调节优化PaBATunNet模型参数,提高模型预测精度.基于Gard-CAM思想给出了 PaBA-TunNet模型高贡献度特征波长,增加了 PaBATunNet模型的可解释性.以谷物、柴油、啤酒、牛奶四组公开的近红外光谱数据为例,将PaBATunNet模型的预测结果与偏最小二乘(PLS)、主成分回归(PCR)、支持向量机(SVM)和BP神经网络(BP)模型的预测结果进行比较.结果表明,与PLS相比,PaBATunNet模型在谷物、柴油、啤酒、牛奶数据集的预测精度上分别提高了 30.0%、40.7%、43.0%、52.8%;与PCR相比,PaBATunNet 模型的预测精度分别提高了 28.8%、35.9%、40.8%、52.2%;与 SVM 相比,PaBATunNet 模型的预测精度分别提高了 45.5%、37.4%、45.3%、54.7%;与BP相比,PaBATunNet模型的预测精度分别提高了 7.9%、32.4%、90.1%、62.0%.基于并联卷积神经网络的近红外光谱建模方法相比于传统建模方法解决了模型预测精度低、运行时间长、泛化能力差以及可解释性不强等问题,可有效应用于工农业生产中不同物质的定量分析,为建立快速、无损、高精度的近红外光谱定量分析模型提供了科学基础.
Quantitative Analysis Modeling of Near Infrared Spectroscopy With Parallel Convolution Neural Network
Near-infrared spectroscopy has become an indispensable analysis method in industrial and agricultural production process quality monitoring.It has been widely used in the qualitative and quantitative analysis of food,agriculture,medicine and others.-A near-infrared spectroscopy prediction model with high prediction accuracy,high-speed running,and strong generalization ability plays an essential role in the qualitative and quantitative analysis of different substances.However,due to the increase innear-infrared spectroscopy data,the disadvantages of traditional near-infrared spectroscopy modeling methods are obvious.With the development of artificial intelligence technology,deep learning algorithms have been widely used in the field of near-infrared spectroscopy.The quantitative analysis model of near-infrared spectroscopy based on a parallel convolution neural network(PaBATunNet)was proposed.PaBATunNet comprisedonel-D convolutional layer,one parallel convolution module(Module),one flattening layer,four fully connected layers and one parameter regulator(PR).The Module included five submodules and one Concatenate function,which was used to extract the linear and nonlinear multidimensional features of the spectral data,respectively and concatenate them.The prediction accuracy of PaBATunNet was improved by PR,which optimized the model parameters.The high contribution characteristic wavelengths of PaBATunNet were given based on Gard-CAM,which improved the interpretability of PaBATunNet.By taking public near-infrared spectroscopy datasets of grain,diesel fuel,beer and milk as examples,the prediction results of PaBATunNet were compared with partial least squares(PLS),principal component regression(PCR),support vector machine(SVM)and back propagation neural network(BP).The results showed that the prediction accuracies of PaBATunNet tograin,diesel fuel,beer and milk datasets were respectively increased by 30.0%,40.7%,43.0%and 52.8%in comparison with PLS,28.8%,35.9%,40.8%and 52.2%in comparison with PCR,45.5%,37.4%,45.3%and 54.7%in comparison with SVM,and 7.9%,32.4%,90.1%and 62.0%in comparison with BP.Compared with the traditional near-infrared spectroscopy modeling methods,the PaBATunNet based on the parallel convolutional neural network,has solved the problems of low prediction accuracy,long running time,poor generalization ability and poor interpretability.It can be effectively applied to quantitative analysis in industrial and agricultural production.It provides a theoretical basis for establishing the rapid,nondestructive and high-precision near-infrared spectroscopy quantitative analysis model.

Near-infrared spectroscopyDeep learningParallel convolution neural networkQuantitative analysisPrediction model

于水、宦克为、刘小溪、王磊

展开 >

长春理工大学物理学院,吉林长春 130022

吉林省科学技术信息研究所,吉林长春 130033

近红外光谱 深度学习 并联卷积神经网络 定量分析 预测模型

国家自然科学基金吉林省科技发展计划

6190502320240404046ZP

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(6)
  • 29