首页|基于主成分分析和宽度学习系统的土壤铅镉重金属元素定量分析

基于主成分分析和宽度学习系统的土壤铅镉重金属元素定量分析

扫码查看
在土壤重金属元素定量分析研究中,X射线荧光分析(XRF)是一种有效的无损分析技术.由于受到矩阵效应以及元素干扰的影响,已有的机器学习方法在利用土壤XRF光谱预测铅(Pb)元素、镉(Cd)元素浓度时存在性能不足和不稳定的问题.该工作提出了基于主成分分析(PCA)结合宽度学习系统(BLS)的XRF土壤重金属元素定量分析方法(PCA-BLS),用于精确、高效、稳定测定土壤中Pb元素和Cd元素的浓度.使用PCA对56个标准土壤数据进行特征降维,并选取Pb和Cd的前3个主成分作为特征.将最优主成分特征输入宽度学习系统进行校正和测试,并使用网格搜索算法确定最佳网络结构.其中Pb元素和Cd元素对应的BLS的三个最优参数值分别为2,11,11和3,19,15.使用支持向量回归(SVR)、BP神经网络和原始BLS三种模型与PCA-BLS方法进行对比.PCA-BLS在测定Pb对应的决定系数R2、均方根误差RMSE和平均绝对百分比误差MAPE三个指标上取得了0.954、1.433、1.014的结果,在定量Cd实验中取得R2为0.982、RMSE为1.215和MAPE为1.059的精度.网格搜索可视化表明PCA-BLS在预测两种重金属元素时具有稳定的性能.实验结果表明,PCA-BLS可以有效校正土壤XRF光谱中的矩阵效应和干扰,在准确预测Pb和Cd元素浓度的同时保持模型稳定性,是一种具有潜力的XRF光谱定量分析方法.
Quantitative Analysis of Lead and Cadmium Heavy Metal Elements in Soil Based on Principal Component Analysis and Broad Learning System
X-ray fluorescence analysis(XRF)is a remarkably effective analytical technique for quantitatively studying heavy metal elements in soils.Due to matrix effects and elemental interferences,existing machine-learning methods suffer from inadequate performance and instability in predicting lead(Pb)and cadmium(Cd)concentrations using soil XRF spectra.Therefore,this paper proposes a PCA-BLS method for the XRF quantitative analysis of heavy metals in soil based on principal component analysis(PCA)combined with the broad learning system(BLS).It can accurately,efficiently,and stably determine concentrations of Pb and Cd in soil.First,the 56 standard soil data are feature-reduced using PC A.The first three principal components of Pb and Cd are selected as features.Then,the optimal principal component features are fed into the width learning system for calibration and testing.Using the grid search determine the optimal network structure.The three optimum parameters for the BLS corresponding to the Pb and Cd elements are 2,11,11 and 3,19,15,respectively.Using support vector regression(SVR),BP neural network,and the original BLS compared with the PCA-BLS.PCA-BLS achieved performances of 0.954,1.433,and 1.014 in the R2,RMSE,and MAPE corresponding to Pb.In the quantitative Cd,PCA-BLS obtains the R2 of 0.982,RMSE of 1.215,and MAPE of 1.059.Grid search visualization demonstrates the stable performance of PCA-BLS in predicting two heavy metal elements.The experimental results show that PCA-BLS can effectively correct for matrix effects and interferences in soil XRF.The PCA-BLS is a promising method for quantitative XRF spectroscopy that accurately predicts Pb and Cd elemental concentrations while maintaining model stability.

Soil heavy metalsXRF quantitative analysisBroad learning systemPrincipal component analysis

吕树彬、杨婉琪、李福生

展开 >

电子科技大学自动化工程学院,四川成都 611731

电子科技大学长三角研究院(湖州),浙江湖州 313001

土壤重金属 XRF定量分析 宽度学习系统 主成分分析

国家自然科学基金项目

62075028

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(7)