首页|基于可见/近红外光谱和函数型线性回归模型的成熟期苹果可溶性固形物含量预测

基于可见/近红外光谱和函数型线性回归模型的成熟期苹果可溶性固形物含量预测

Prediction of Soluble Solid Contents in Apples Using Vis-NIRS and Functional Linear Regression Model

扫码查看
可溶性固形物含量(SSC)是反映苹果品质和成熟度的重要指标,能够用于苹果品质分析和成熟度预测.以新疆阿克苏冰糖心红富士苹果为研究对象,从果实膨大定形期至完熟期,以3 d等间隔周期采摘样本,采集其380~1 110 nm的可见/近红外光谱,测定其SSC,共552个样品.然后,利用基函数平滑方法将采集的可见/近红外光谱离散数据转化为光谱曲线,即函数型数据,并以可见/近红外光谱曲线、一阶导曲线、二阶导曲线为函数型解释变量,SSC为标量响应变量,分别建立函数型线性回归模型.为了验证和分析模型的性能,根据原始光谱离散数据,经过移动平滑、一阶导和二阶导预处理后,分别建立偏最小二乘回归(PLSR)、核支持向量机(KSVM)、随机森林(RF)、梯度提升树(GBM)和深度神经网络(DeepNN).结果表明,在建立的18个模型中,针对训练集,PLSR-dNIR模型、KSVM-dNIR模型、RF-dNIR模型、GBM-dNIR模型和 Deep NN-d2NIR 模型都优于 FunLR-NIR 模型、FunLR-dNIR 模型、FunLR-d2NIR 模型,且 Deep NN-dNIR 模型最优(rc=0.999 6,Rc2=0.998 6,RMSEC=0.074 0,RPDC=27.436 6);针对测试集,Fun-LR-NIR 模型、FunLR-dNIR模型、FunLR-d2NIR模型均优于其他所有模型,且FunLR-NIR模型最优(rv=0.953 4,Rv2=0.907 7,RMSEV=0.585 6,RPDV=3.301 7).综合训练集和测试集的结果来看,核支持向量机模型、随机森林模型、梯度提升树模型和深度神经网络模型容易过拟合,而函数型线性回归模型具有更好的普适性.此外,从三个函数型线性回归模型(FunLR-NIR模型、FunLR-dNIR模型、FunLR-d2NIR模型)的预测效果看,模型均具有良好的鲁棒性和较高的预测精度.试验结果表明,结合可见/近红外光谱技术与函数型数据分析构建的函数型线性回归模型,可成功、有效地实现成熟期苹果的可溶性固形物含量预测.
Soluble solid contents(SSC)are an important indicator of apple quality and maturation and can be used for quality analysis and ripeness prediction.In this paper,552 samples of Sugar Core Red Fuji apples from Aksu of Xinjiang Province were picked at equal intervals of three days from the fruit swelling and setting stage to the complete mature stage,the visible near-infrared spectroscopy(vis-NIRS)of the samples at 380 to 1 110 nm were collected respectively,and the SSC were measured.Then,the collected discrete data of vis-NIRS were transformed into spectral curves using the basis function smoothing method,i.e.,function-type data,and respectively,the functional linear regression model was established with Vis-NIRS curves,first-order derivative curves,and second-order derivative curves as functional explanatory variables and SSC as scalar response variables.To confirm and analyze the performance of the model,partial least squares regression(PLSR),kernel support vector machine(KSVM),random forest(RF),gradient boosting tree(GBM)and deep neural network(DeepNN)were established by the original spectral discrete data after moving smooth,first-order derivative and second-order derivative pre-processing.The results show that among the 18 models,for the training set,the PLSR-dNIRmodel,KSVM-dNIR model,RF-dNIR model,GBM-dNIR model,and Deep NN-d2NIR model were outperformed the FunLR-NIR model,FunLR-dNIR model and FunLR-d2NIR model,and the Deep NN-d2NIR model was optimal(rc=0.999 6,R2=0.998 6,RMSEC=0.074 0,RPDC=27.436 6).For the test set,the FunLR-NIR model,FunLR-dNIR model,and FunLR-d2NIR model outperformed all other models,and the FunLR-NIR model was optimal(rv=0.953 4,R2=0.907,RMSEV=0.585 6,RPDV=3.301 7).The results of the training sets and test sets show that the kernel support vector machine model,random forest model,gradient boosting tree model,and deep neural network model are prone to overfitting.In contrast,the functional linear regression model has better generalizability.Besides,the prediction results of the three functional linear regression models(FunLR-NIR model,FunLR-dNIR model,and FunLR-d2NIR model)showed that all the models have good robustness and high prediction accuracy.The experimental results showed that the functional linear regression models combined with vis-NIR spectroscopy and functional data analysis could successfully and effectively achieve the prediction of soluble solid contents of apples at the ripening stage.

AppleSoluble solid contentVisible near-infrared spectroscopyFunctional data analysisFunctional linear regression model

黄华、刘亚、马毅航、向思函、何佳宁、王诗婷、郭俊先

展开 >

新疆农业大学数理学院,新疆乌鲁木齐 830052

新疆农业科学院综合试验场,新疆乌鲁木齐 830013

新疆农业大学机电工程学院,新疆乌鲁木齐 830052

苹果 可溶性固形物含量 可见/近红外光谱 函数型数据分析 函数型线性回归模型

国家自然科学基金项目新疆维吾尔自治区科技创新团队(天山创新团队)项目新疆农业大学2023年度自治区级大学生创新项目资助

613670012022TSYCTD0011

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(7)