首页|高光谱成像技术结合集成学习的金钗石斛氮素检测

高光谱成像技术结合集成学习的金钗石斛氮素检测

扫码查看
金钗石斛叶片氮素含量是实现其精准施肥的重要决策依据之一.传统的氮素含量检测方法耗时且有损样品,如何高效检测金钗石斛叶片氮素含量是种植企业日益关心的问题.为了快速、无损获取金钗石斛叶片氮素含量,以金钗石斛新鲜叶片为实验样品,在获取其402.6~1 005.5 nm高光谱图像和氮素化学检测值后,经感兴趣区域(ROI)分割、光谱预处理,利用偏最小二乘回归(PLSR)、核岭回归(KRR)以及支持向量回归(SVR)等三种个体学习器算法,以及随机森林(RF)、Bagging和Adaboost等三种集成学习算法,针对金钗石斛的氮素含量进行建模.在此基础上构建基于金钗石斛新鲜叶片全波段光谱信息、经过竞争自适应加权算法(CARS)特征提取的特征波段光谱信息的回归预测模型,并进行预测精度对比.结果表明,在基于全波段光谱信息构建模型时,经过多项式平滑算法(SG)预处理的光谱数据建立的RF模型最佳(RCV2=0.961 4、RMSECV=0.081 8、RP2=0.972 6、RMSEP=0.063 3),所有模型 R2 都达到了0.90 以上.基于CARS提取的特征波段构建回归预测模型,Bagging模型具有最高的精确度和稳定性,其中SG-CARS-Bag-ging 预测效果最好(RCV2=0.938 7、RMSECV=0.100 0、RP2=0.953 5、RMSEP=0.082 6),而个体学习器中的KRR和SVR模型精度明显下降.经过CARS算法特征提取去掉了一些重要波段,提高了建模的效率,但是模型的精度有所降低.因此在优化回归模型的特征参数时,必须始终考虑精度和效率之间的平衡.结果表明,RF、Bagging和Adaboost等集成算法比PLSR、KRR和SVR个体学习器算法具有更高的稳定性和预测精度,更适用于高光谱数据的分析与处理,在金钗石斛氮素营养监测方面具有明显优势.
Hyperspectral Imaging Technology Combined With Ensemble Learning for Nitrogen Detection in Dendrobium nobile
Dendrobium nobile leaf blades'nitrogen content is a decisive factor for precise fertilization.Traditional nitrogen content detection methods are time-consuming and can completely deplete samples.Efficiently detecting the nitrogen content of D.nobile leaf blades has become a growing concern for herbal medicine cultivation enterprises.To quickly and non-destructively obtain the nitrogen content of D.nobile leaf blades,this study used fresh D.nobile leaf blades as experimental samples.After obtaining their hyperspectral images in the range of 402.6~1 005.5 nm and nitrogen chemical detection values,the images underwent the extraction of regions of interest(ROI),followed by preprocessing of the spectral information within those regions'learner algorithms including Partial Least-Squares Regression(PLSR),Kernel Ridge Regression(KRR),and Support Vector Regression(SVR),as well as ensemble learning algorithms including Random Forest(RF),Bagging,and Adaboost,were utilized to model the nitrogen content of D.nobile.Regression prediction models were constructed based on the full-band spectral information of fresh D.nobile leaf blades and feature bands of spectral information extracted through CARS,and the prediction accuracy was compared.The results showed that when constructing the monitoring model based on the full-band spectral information,the RF model built with spectral data preprocessed by the Savitzky-Golay filtering(SG)method had the best prediction result(RCV2=0.961 4,RMSECV=0.081 8,RP2=0.972 6,RMSEP=0.063 3),and all models achieved R2 values over 0.90.When constructing the regression prediction model based on feature bands extracted through CARS,the Bagging model had the highest accuracy and stability,with the best prediction result observed in the SG-CARS-Bagging model(RCV2=0.938 7,RMSECV=0.100 0,RP2=0.953 5,RMSEP=0.082 6),while the accuracy of the individual learner models KRR and SVR was significantly lower.The CARS algorithm feature extraction removed some important bands,improving modeling efficiency but reducing model accuracy.Therefore,when optimizing the feature parameters of the regression model,it is necessary always to consider the balance between accuracy and efficiency.The research results indicate that ensemble algorithms such as RF,Bagging,and Adaboost have higher stability and prediction accuracy than individual learner algorithms such as PLSR,KRR,and SVR.They are more suitable for analyzing and processing hyperspectral data and have obvious advantages in the nitrogen nutrition monitoring of D.nobile.

HyperspectralDendrobium nobileEnsemble learningNitrogenCARS

匡润、龙腾、刘海林、吴继辉、吕金胜、谢自然、刘文涛、兰玉彬、龙拥兵、王再花、赵静

展开 >

华南农业大学电子工程学院(人工智能学院),广东广州 510642

广东省农业科学院环境园艺研究所/广东省园林花卉种质创新综合利用重点实验室,广东广州 510640

国家精准农业航空施药技术国际联合研究中心,广东广州 510642

岭南现代农业科学与技术广东省实验室,广东广州 510642

展开 >

高光谱 金钗石斛 集成学习 氮素 CARS

广东省重点领域研发计划项目广东省特定高校学科建设项目2023年省级农业科技发展及资源环境保护管理项目&&岭南现代农业实验室科研项目

2022B02020800022023B105640022023KJ1312023-NBH-00-009NT2021009

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(7)