首页|Zn3(As1-xPx)2纳米结构制备及光谱特性研究

Zn3(As1-xPx)2纳米结构制备及光谱特性研究

扫码查看
Zn3As2与Zn3P2具有相同的伪立方晶格结构,它们具有较高的电子迁移率、较窄的直接带隙和良好的空气稳定性,在光电器件领域呈现出广泛的应用前景.目前关于Zn3As2-Zn3P2固溶体纳米结构的研究相对较少,采用高气压烧结技术得到Zn3(As1-xPx)2(x=0、0.05、0.1)母合金,再利用化学气相沉积方法合成出多种形态的Zn3(As1-xPx)2纳米结构,包括宏观尺寸的纳米带(长度3~10 mm;宽度1~4 mm;厚度约20 μm)、纳米帆、纳米棒及纳米银簪等.系统的研究了P掺杂对相组成、元素含量、微结构以及光谱特性的影响.X射线衍射(XRD)结果表明,Zn3(As1-xPx)2宏观纳米带样品的主相为α'相,随着P掺杂含量的增加,(224)衍射峰向右发生偏移,表明晶格常数减小.电子能谱分析显示P理论值(光致发光光谱)掺杂含量值x=0.05和x=0.1的Zn3(As1-xPx)2母合金纳米带中P的实际含量分别为x=0.026及x=0.062.微结构分析表明,Zn3As2宏观纳米带的生长模式为沿<221>晶面菱形层状生长,P掺杂使纳米带的宏观尺寸减小,生长模式由菱形层状生长转变为纳米颗粒堆积层状生长.纳米带样品的拉曼光谱在79、97、198、320、428和1 107 cm-1出现特征峰,P掺杂导致拉曼光谱中1 107 cm-1特征峰发生蓝移,傅里叶红外光谱(FTIR)中1 101和1 599 cm-1特征峰与PL谱中的300、422和635 nm特征峰也发生蓝移.Zn3As2与Zn3(As0.974 P0.026)2纳米带光电流与电压的线性关系良好,存在较好的欧姆特性,P掺杂后的Zn3(As0.974P0.026)2纳米带在900 nm条件下的光响应最为敏感.
Preparation and Spectroscopic Properties of Zn3(As1-xPx)2 Nanostructures
Zn3As2 and Zn3P2 have the same pseudo-cubic lattice structure and present a wide range of application prospects in the field of optoelectronic devices because of their high electron mobility,narrow direct band gaps,and good air stability.At present,there is relatively little research on the nanostructure of Zn3As2-Zn3P2 solid solution,and Zn3(As1-xPx)2(x=0,0.05,0.1)master alloys were obtained by high-pressure sintering technology,and then a variety of Zn3(As1-xPx)2 nanostructures are synthesized by chemical vapor deposition,including macro-sized nanoribbons(Length 3~10 mm;Width 1~4 mm;Thickness~20 μm),nano sails,nanorods and nano silver hairpins.The effect of P doping on phase composition,element content,microstructure,and spectral characteristics was systematically investigated.XRD results showed that the main phase of Zn3(Asi-xPx)2 macroscopic nanoribbon samples was a'phase.With the increase of P doping contents,the(224)diffraction peak shifted to the right,indicating a decrease in the lattice constant.Electron spectroscopy analysis showed that the actual content of P in these nanoribbons corresponding to x=0.05 and x=0.1 Zn3(As1-xPx)2 master alloys was x=0.026 and x=0.062,respectively.The microstructure analysis showed that the growth mode of Zn3 As2 macroscopic nanoribbons was along the<221>crystal face rhombus-shaped layer-like growth and that P doping led to a reduction in the macroscopic size of the nanoribbons,accompanied by growth mode change from rhombus-shaped layered growth to nanoparticle stacked layered growth.Raman spectra of the nanoribbon samples showed characteristic peaks at 79,97,198,320,428 and 1 107 cm-1.P doping led to a blue shift of 1 107 cm-1 characteristic peaks in Raman spectra,and 1 101 and 1 599 cm-1 characteristic peaks in Fourier infrared spectroscopy(FTIR),and 300,422,and 635 nm characteristic peaks in PL spectra were also blue-shifted.The linear relationship between photocurrent and voltage of Zn3As2 and Zn3(As0.974P0.026)2 nanoribbons indicate good ohmic characteristics,and the photoresponse of Zn3(As0.974P0.026)2 nanoribbons after P doping shows the highest sensitivity under 900 nm conditions.

Zn3(As1-xPx)2Zn3As2NanoribbonSolid solution

王浩、孙乃坤、庞超、王志帅、陈上峰、李武、田辉、岱钦

展开 >

沈阳理工大学理学院,辽宁沈阳 110159

Zn3(As1-xPx)2 Zn3As2 纳米带 固溶体

国家自然科学基金项目

52171187

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(7)