首页|基于注意力机制残差神经网络的近红外芒果种类定性建模方法

基于注意力机制残差神经网络的近红外芒果种类定性建模方法

Qualitative Modeling Method of Mango Species in Near Infrared Based on Attention Mechanism Residual Neural Network

扫码查看
现代光谱检测技术的飞速发展与深度学习紧密相关,作为一种端到端的模型,深度神经网络可以从光谱中得到更多信息,从而提升模型鲁棒性.为探究近红外光谱结合深度学习对芒果种类定性预测的可行性,提出一种基于卷积注意力机制(CBAM)的一维残差神经网络(1D-AD-ResNet-18)模型.为降低光谱中冗余信息的干扰,在传统一维残差神经网络(1D-ResNet-18)中嵌入CBAM卷积注意力模块,该模块可重点关注光谱局部有用信息;为避免梯度消失、过拟合情况发生,使用解决网络"退化"问题的ResNet-18.对于186个芒果样本,采用70%的样本进行训练,30%的样本进行测试,采用准确度(Accuracy)、精确率(Preci-sion)、召回率(Recall)、F1 值(F1-score)、宏观平均值(Macro-average)以及加权平均值(Weighted-average)作为模型评价指标.建立传统1 D-ResNet-18、SNV-SVM和PCA-KNN三种对比模型,与上述三种方法作对比,所建立的1D-AD-ResNet-18模型取得最优预测结果,四种定性分析模型的准确率分别为96.42%,80.35%,76.78%和67.85%.结果表明,1D-AD-ResNet-18模型实现了对芒果种类的准确识别与分类,为近红外光谱定性分析芒果种类提供了新思路.
In recent years,the rapid development of modern spectral detection technology is closely related to deep learning.As an end-to-end model,the deep neural network can get more information from the spectra,thus improving the robustness of the model.A one-dimensional residual neural network(1D-AD-ResNet-18)model based on a convolutional block attention module was proposed to explore the feasibility of qualitative prediction of mango species by near-infrared spectroscopy combined with deep learning.Firstly,to reduce the interference of redundant information in the spectra,the CBAM convolution attention module is added to the traditional one-dimensional residual neural network,which can focus on the local useful information of the spectra.Secondly,to avoid the disappearance of gradient and the occurrence of overfitting,ResNet-18 is used to solve the problem of network"degradation".For 186 mango samples,70%of the samples were trained,and 30%were tested.Accuracy,Precision,Recall,Fl-score,Macro-average,and weighted average were used as evaluation indexes of the model.Three comparison models were established,including traditional one-dimensional ResNet-18,SNV-SVM,and PCA-KNN.Compared with the above three methods,the established 1D-AD-Res Net-18 model obtained the optimal prediction results,and the accuracy of the four qualitative analysis models was 96.42%,80.35%,76.78%and 67.85%.The experimental results show that the 1D-AD-ResNet-18 model can accurately identify and classify mango species,which provides a new idea for the qualitative analysis of mango species by NIR spectroscopy.

Mango species identificationCBAM attention mechanismNear-infrared spectroscopyResidual network

王书涛、万金丛、刘诗瑜、张金清、王玉田

展开 >

燕山大学电气工程学院仪器科学与工程系,河北秦皇岛 066004

河北大学质量技术监督学院,河北保定 071002

芒果种类识别 CBAM注意力机制 近红外光谱 残差网络

国家自然科学基金项目河北省自然科学基金项目

61771419F2017203220

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(8)
  • 14