首页|毛竹向杉木林扩张不同阶段叶面积指数地面高光谱遥感模型研究

毛竹向杉木林扩张不同阶段叶面积指数地面高光谱遥感模型研究

Canopy Hyperspectral Modeling of Leaf Area Index at Different Expansion Stages of Phyllostachys edulis Into Cunninghamia lanceolata Forest

扫码查看
毛竹向杉木林扩张会引发"林退竹进"、林权纠纷等生态与经济问题.利用遥感有效反演毛竹演替过程对于科学管控森林资源意义重大.为了揭示地面高光谱在毛竹扩张不同阶段叶面积指数(LAI)反演的有效性,以毛竹在杉木林中扩张为研究对象,沿毛竹扩张方向设置四类杉竹比例样方,模拟扩张Ⅰ、Ⅱ、Ⅲ、Ⅳ阶段,根据原始光谱及开方、对数、倒数、一阶微分、二阶微分等10种光谱变换数据与不同扩张阶段LAI相关性选取特征波段,构建归一化植被指数(NDVI)、黄光波段指数(YI)等7个LAI显著相关植被指数,分别建立光谱信息与植被指数的五类单因素回归模型,基于植被指数利用神经网络、决策森林回归、贝叶斯线性回归和线性回归四种机器学习方法构建多因素回归模型,探讨毛竹向杉木林不同扩张阶段LAI高光谱反演模型适用性.结果表明:原始光谱的一阶微分、二阶微分、对数一阶微分和倒数一阶微分四类微分变换能够丰富光谱信息,更好表征毛竹向杉木林的扩张过程;植被指数中,YI与毛竹LAI相关系数最大,表现出毛竹扩张过程的高敏感性,NDVI反演效果最佳,但基于传统植被指数建模的总体反演效果不佳;基于微分变换光谱的二次多项式和幂指数回归模型在各扩张阶段表现更佳,神经网络算法在LAI反演方面优于其他机器学习算法,总体来看,基于光谱变换的传统回归算法优于机器学习建模方法.扩张第Ⅲ阶段基于对数倒数一阶微分变换光谱构建的模型(y=5.291 4e183.76x)拟合效果最佳,建模集和验证集R2 分别为0.735和0.742,RMSE分别为0.733和0.468,nRMSE分别为14.0%和9.9%,建议毛竹扩张管控选在竹林各半的混交林中.系统开展毛竹不同扩张阶段LAI高光谱反演模型的创新分析,将为科学营林造林管理奠定基础.
The expansion of Phyllostachys edulis(Moso Bamboo)into Cunninghamia lanceolata(Chinese fir)forest has led to ecological and economic problems such as"forest retreat and bamboo advance"and forest rights disputes.The use of remote sensing to effectively invert the succession process of Moso bamboo is of great significance for scientific control of forest resources.To reveal the effectiveness of canopy hyperspectral inversion of leaf area index(LAI)at different expansion stages of Moso bamboo to Chinese fir forest,four types of sample squares in mixed forest,which were divided based on a percentage of Moso bamboo were set to simulate expansion stages Ⅰ,Ⅱ,Ⅲ and Ⅳ along the expansion direction.Meanwhile,to explore the applicability of LAI hyperspectral inversion models for different expansion stages of Moso bamboo to Chinese fir forest,five types of single-factor regression models were established based on the characteristic wavebands which were chosen by the correlation between the original spectra,10 spectral transformations such as open square,logarithmic,inverse,first-order differential and second-order differential and LAI at different expansion stages,and seven LAI significantly related vegetation indices such as normalized difference vegetation index(NDVI),yellowness index(YI)and so on.Multi-factor regression models were established based on the vegetation indices using four machine learning methods:neural network,decision forest regression,Bayesian linear regression,and linear regression.The results showed that the differential transform,including first-order differentiation(R'),second-order differentiation(R"),logarithmic first-order differentiation[(lgR)']and inverse first-order differentiation[(1/R)']of the original spectrum(R),could enrich the spectral information to characterize the expansion process better.Among the vegetation indices,YI had the highest correlation coefficient with LAI,showing high sensitivity to the expansion process,and NDVI had the best inversion effect.However,the overall inversion based on traditional vegetation index modeling was in effective.Moreover,the quadratic polynomial and power exponential regression models based on the differential transform spectra performed better in each expansion stage,while the inversion effect based on the vegetation indices was poor,and the neural network algorithm outperformed other machine learning algorithms.Traditional regression algorithms based on spectral transformations performed better than machine learning modeling methods.The model(y=5.291 4e183,76x)based on log-inverse first-order differential transform spectra fitted best in expansion stage Ⅲ with R2 of 0.735 and 0.742,RMSE of 0.733 and 0.468,and nRMSE of 14.0%and 9.9%for the modeling and validation sets,respectively.We suggest that the Moso bamboo expansion control should be selected in mixed forests of half of each species.Innovative analysis of LAI hyperspectral inversion modeling of Moso bamboo at different expansion stages will provide a basis for scientific silvicultural management.

Moso Bamboo expansionLAIRemote sensing inversionSpectral transformationVegetation indexModeling

李聪慧、李宝银、毛振伟、李璐飞、余坤勇、刘健、钟全林

展开 >

福建师范大学地理科学学院,福建福州 350007

福建开放大学理工学院,福建福州 350003

江西阳际峰国家级自然保护区管理局,江西 贵溪 335400

福建农林大学林学院,福建福州 350002

展开 >

毛竹扩张 LAI 遥感反演 光谱变换 植被指数 建模

国家自然科学基金项目中央财政国家级自然保护区补助资金项目福建省教育厅中青年教师教育科研项目

323718591136JAT210684

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(8)
  • 25