首页|便携式LIBS结合SSA-KELM的废钢成分定量分析方法

便携式LIBS结合SSA-KELM的废钢成分定量分析方法

扫码查看
废钢是电炉炼钢的重要原料,为有效利用废钢,需对废钢中各元素进行检测.提出了麻雀搜索算法优化的核极限学习机(SSA-KELM)与激光诱导击穿光谱技术(LIBS)相结合的新方法,对中低合金钢和低合金钢的钢样共12组样品进行元素含量建模分析.首先通过便携式LIBS光谱仪采集两类共计12种不同的废钢样品在170~400 nm范围内的激光诱导击穿光谱数据,为降低实验波动影响,每个试验样品的表面均匀选取28个不同的位置进行检测,使用K值校验剔除粗大误差,并将剩余数据进行平均处理,最终得到12个样品共336组平均光谱数据;然后对获得的光谱数据进行基线校正和归一化处理,降低基线波动影响;然后选出待检测元素的多条相关谱线共65条作为模型的输入特征,接着对光谱数据进行训练集与测试集的划分,从每类钢种中随机选择一个样品,提取其处理后的光谱数据作为模型的测试集,剩余数据作为模型的训练集,利用麻雀搜索算法(SSA)对核极限学习机(KELM)进行参数寻优,针对相关元素进行建模.最终所建立的C、Cu、Mn、Cr、Ni、Si、V、Al、Ti元素的模型在验证集的相关决定系数(R2)和均方根误差(RMSE)平均为0.996和0.016.实验比较了单变量校正模型和基于遗传算法优化的核极限学习机(GA-KELM)的多变量校正模型的定量分析效果,结果表明,与单变量校正模型和遗传算法和核极限学习机(GA-KELM)模型相比,SSA-KELM模型的所有指标都有显著提高,作为多变量模型的KELM与麻雀搜索算法相结合,能够有效的减弱多种因素对待分析元素的干扰,增强定量分析的性能,通过与便携式LIBS系统结合,可用于现场作业,实现对废钢中各元素含量的快速精准检测.
Element Detection in Scrap Steel Using Portable LIBS and Sparrow Search Algorithm-Kernel Extreme Learning Machine(SSA-KELM)
Elemental content detection is necessary for efficiently utilizing scrap steel,an important raw material for electric furnace steelmaking.In this study,a new method combining the sparrow search algorithm optimized kernel extreme learning machine(SSA-KELM)and laser-induced breakdown spectroscopy(LIBS)was proposed to analyze and model the element contents of 12 groups of steel samples,including medium-low alloy steel and low alloy steel.First,the portable LIBS spectrometer was used to collect laser-induced breakdown spectroscopy data of 12 different steel scrap samples in the range of 170~400 nm,and 28 different locations on the surface of each sample were selected for detection to reduce experimental fluctuations.The k-value check was used to eliminate gross errors,and the remaining data was averaged to obtain 336 groups of average spectrum data from 12 sample groups.Then,the obtained spectral data was subjected to baseline correction and normalization to reduce the baseline fluctuation.Multiple related spectral lines of the target elements were selected as the input features of the model,and the spectral data was divided into training and testing sets.A random sample from each steel type was selected as the model's testing set,and the remaining data was used as the model's training set.The sparrow search algorithm was used to optimize the parameters of the kernel extreme learning machine(KELM),and the model was established for the related elements.The final model for C,Cu,Mn,Cr,Ni,Si,V,Al,and Ti elements had an average correlation coefficient(R2)and root mean square error(RMSE)of 0.996 and 0.016,respectively,on the validation set.The quantitative analysis performance of the single variable calibration model and the genetic algorithm optimized KELM(GA-KELM)multivariate calibration model were compared,and the results showed that the SSA-KELM model had significant improvements in all indicators compared to the single variable calibration model and GA-KELM model.The combination of KELM and Sparrow search algorithm as a multivariate model can effectively reduce the interference of multiple factors on the target elements and enhance the performance of the quantitative analysis.It can rapidly and accurately detect various element contents in steel scrap on-site by combining it with the portable LIBS system.

Laser-induced breakdown spectroscopyScrap steelSparrow search algorithmKernel extreme learning machineQuantitative analysis

黄晓红、刘晓辰、刘艳丽、宋超、孙永长、张庆军

展开 >

华北理工大学人工智能学院,河北唐山 063210

河北省工业智能感知重点实验室,河北唐山 063210

河钢集团钢研总院,河北石家庄 050000

华北理工大学综合测试分析中心,河北唐山 063210

展开 >

激光诱导击穿光谱 废钢 麻雀搜索算法 核极限学习机 定量分析

国家自然科学基金区域创新发展联合基金重点项目河北省高等学校科学技术重点研究项目

U21A20114ZD2020152

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(9)