首页|滨海湿地土壤质地高光谱估测模型对比分析

滨海湿地土壤质地高光谱估测模型对比分析

扫码查看
土壤质地影响着植被分布、水土保持能力、微生物活动等多种物理、化学、生物和水文特性和过程.准确地获取土壤质地对湿地生态修复和保护具有重要意义.基于天津市滨海湿地57个实测表层土壤质地和可见光-近红外高光谱数据,对土壤样品进行S-G平滑以及一阶微分(FD)、倒数(RT)、倒数一阶微分(RTFD)、平方根(SR)、平方根一阶微分(SRFD)、倒数之对数(LR)和倒数之对数一阶微分(LRFD)八种变换,分析不同土壤质地类别的光谱曲线特征及土壤粒径含量与八种变换之间相关性.通过竞争性自适应重加权算法(CARS)优选特征波段,结合偏最小二乘(PLSR)、随机森林(RFR)和支持向量机(SVR)三种回归算法,对比不同光谱变换后的土壤粒径含量建模效果.结果表明:(1)湿地土壤质地类别主要为粉壤土和粉土,粉土在400~2 400 nm波段光谱反射率最高,砂土在400~2 000 nm波段光谱反射率最低,FD、RTFD和SRFD变换后波段反射率与土壤粒径含量的相关性明显提高,最大相关系数绝对值均达到0.58以上,最高达到0.70.(2)CARS算法筛选八种光谱变换的特征波段数为全波段数的1.05%~6.15%,有效降低光谱数据的信息冗余.(3)对比三种粒径含量估测模型,SRFD和RTFD光谱变换的SVR模型精度最好,优于其他两种模型,黏粒(SRFD)测试集(R2=0.72,RMSE=1.86%,nRMSE=11.33%)、粉粒(SRFD)测试集(R2=0.72,RMSE=2.82%,nRMSE=7.30%)和砂粒(RTFD)测试集(R2=0.71,RMSE=5.75%,nRMSE=5.91%).研究结果可为高光谱数据准确监测滨海湿地土壤质地提供依据与技术支撑.
Comparative Analysis of Hyperspectral Estimation Models for Soil Texture in Coastal Wetlands
Soil texture affects many physical,chemical,biological,and hydrological characteristics and processes,such as vegetation distribution,soil and water conservation capacity,and microbial activity.Accurate acquisition of soil texture is of great significance for wetland ecological restoration and protection.Based on 57 measured surface soil texture and visible-near-infrared hyperspectral data in Tianjin coastal wetland,the soil samples were smoothed by S-G and transformed by first derivative(FD),reciprocal transformation(RT),reciprocal first derivative(RTFD),square root(SR),square root first derivative(SRFD),logarithm of reciprocal(LR)and logarithm of reciprocal first derivative(LRFD),the characteristics and correlations of spectral curves of different soil texture categories were analyzed.A competitive adaptive reweighting algorithm(CARS)was used to select the characteristic bands,and partial least square regression(PLSR),random forest regression(RFR),and support vector machineregression(SVR)algorithms were combined to compare the modeling effects of different spectral transformations.The results show that:(1)The texture categories of wetland soil are mainly silty loam and silt.The spectral reflectance of silt is the highest in the 400~2 400 nm band,and the spectral reflectance of sandy soil is the lowest in the 400~2 000 nm band.The correlation between the spectral reflectance of FD,RTFD,and SRFD and the soil particle size content has significantly increased.The absolute value of the maximum correlation coefficient is above 0.58,and the highest is 0.70.(2)The feature band number of eight spectral transforms screened by the CARS algorithm is 1.05%~6.15%of the total band number,effectively reducing the information redundancy of spectral data.(3)Compared with the three estimation models for particle size content,the SVR model of SRFD and RTFD spectral transformation had the best accuracy and was superior to the other two models,the clay(SRFD)test set(R2=0.72,RMSE=1.86%,nRMSE=11.33%),the silt(SRFD)test set(R2=0.72,RMSE=2.82%,nRMSE=7.30%)and the sand(RTFD)test set(R2=0.71,RMSE=5.75%,nRMSE=5.91%).The results of this study can provide a basis and technical support for the accurate monitoring of soil texture in coastal wetland areas with hyperspectral data.

Coastal wetlandSoil textureSpectral transformationCompetitive adaptive reweighted samplingMachine learning

李想、张永彬、刘明月、满卫东、孔德坤、宋利杰、宋敬茹、王福增

展开 >

华北理工大学矿业工程学院,河北唐山 063210

河北省矿区生态修复产业技术研究院,河北唐山 063210

矿产资源绿色开发与生态修复协同创新中心,河北唐山 063210

唐山市资源与环境遥感重点实验室,河北唐山 063210

黑龙江外国语学院,黑龙江哈尔滨 150025

河北地质职工大学,河北石家庄 050081

展开 >

滨海湿地 土壤质地 光谱变换 竞争性自适应重加权算法 机器学习

国家自然科学基金项目国家自然科学基金项目国家自然科学基金项目河北省自然科学基金项目河北省自然科学基金项目河北省高等学校科学技术研究项目青年拔尖人才项目唐山市科技计划重点研发项目

419013754210139352274166D2019209322D2022209005BJ202005822150221J

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(9)