首页|基于波长注意力的多特征融合卷积神经网络的近红外光谱定量方法

基于波长注意力的多特征融合卷积神经网络的近红外光谱定量方法

扫码查看
深度学习技术越来越多地应用在近红外光谱的定量分析中,由于近红外光谱数据存在光谱数据量少、数据质量不足等问题,将传统卷积神经网络应用在光谱的定量分析中会出现过拟合,为提升卷积神经网络提取光谱信息的能力,增强网络的泛化性,提出了基于波长注意力的多特征融合卷积神经网络模型(MWA-CNN),对芒果近红外光谱进行干物质含量定量分析.MWA-CNN在传统卷积神经网络的基础上加入了注意力机制以及多特征融合机制,网络可以在训练过程中学习到不同光谱特征以及不同波段的权重信息,从而提取到高质量的光谱信息,缓解传统卷积神经网络中的过拟合问题,提升回归分析的精度.研究中采用11 691个芒果样本的近红外光谱数据,采用随机法将80%的样本作为训练集,20%的样本作为测试集,通过测试集均方根误差(RMSEP)、训练集均方根误差(RMSEC)、决定系数(R2)、平均绝对误差(MAE)进行模型评价.先对光谱数据进行标准化预处理,然后通过与偏最小二乘回归(PLS)、极限学习机回归(ELM)、支持向量机回归(SVR)和传统的卷积神经网络(CNN)四种传统模型在原始光谱条件下的预测结果进行对比.预测结果表明MWA-CNN网络在五种方法中表现最佳,MWA-CNN在测试集中的RMSE为0.669 9,传统的CNN效果仅次于MWA-CNN,RMSE为0.740 8,且MWA-CNN的过拟合程度相较传统CNN下降明显,MWA-CNN中测试集相较于训练集的RMSE增加了 15.69%,而CNN中测试集相较于训练集的RMSE增加了 151.45%.通过对光谱加入不同信噪比的噪声,再对加噪之后的光谱分别用五种模型进行预测,实验结果表明,在多种信噪比条件下,MWA-CNN模型均能取得五种模型中最优的效果,从实验结果表明,MWA-CNN在近红外光谱定量回归中具有较高的预测精度和泛化能力,同时具有一定的抗噪能力.
Quantitative Method to Near-Infrared Spectroscopy With Multi-Feature Fusion Convolutional Neural Network Based on Wavelength Attention
In recent years,deep learning technology has been applied more and more in the quantitative analysis of near-infrared spectroscopy.However,the traditional convolutional neural network is applied to the spectral analysis due to the problems of a small amount of spectral data and insufficient data quality in near-infrared spectral data.Overfitting problems will occur in quantitative analysis.To improve the ability of convolutional neural networks to extract spectral information and enhance the ge-neralization of the network,this paper proposes a multi-feature fusion convolutional neural network model(MWA-CNN)based on wavelength attention to quantitative analyze the dry matter content in mango by near-infrared spectroscopy.MWA-CNN adds an attention mechanism and a multi-feature fusion mechanism based on the traditional convolutional neural network.The network can learn different spectral feature maps and weight information of different wave bands during the training process,thereby extracting high-quality spectral information to alleviate the overfitting problem in traditional convolutional neural networks and improve the accuracy of regression analysis.In the study,the near-infrared spectrum data of 11 691 mango samples were used,80%of the samples were used as the training set,20%of the samples were used as the test set by random method,and the test set root mean square error(RMSEP)and the training set root mean square error were passed.(RMSEC),coefficient of determination(R2),and mean absolute error(MAE)for model evaluation.In this paper,we first standardize the spectral data for pre-processing and then compare the prediction results with four traditional models of partial least squares regression(PLS),extreme learning machine regression(ELM),support vector machine regression(SVR),and traditional convolutional neural net-work(CNN)under the original spectral conditions.The prediction results show that the MWA-CNN network performs the best among the five methods,and the RMSE of MWA-CNN in the test set is 0.669 9.The traditional CNN effect is second only to MWA-CNN with an RMSE of 0.740 8,and the degree of over fitting of MWA-CNN decreases significantly compared to the traditional CNN.The RMSE of the test set in MWA-CNN compared to the training set increased by 15.69%,while the RMSE of the test set in the CNN compared to the training set increased by 151.45%.By adding noise with different signal-to-noise ratios to the spectra and then predicting the spectra with five models respectively after adding noise,the experimental results show that the MWA-CNN model can achieve the best results among the five models under various signal-to-noise conditions.It can be seen from the experimental results that the MWA-CNN has high prediction accuracy and generalization ability in NIR spectral quantile regression and a certain noise immunity capability.

Near-infrared spectroscopyAttention mechanismMulti-Feature fusionQuantitative regression

朱御康、鲁昌华、张玉钧、蒋薇薇

展开 >

合肥工业大学计算机与信息学院,安徽合肥 230009

中国科学院合肥物质科学研究院,安徽合肥 230031

近红外光谱 注意力机制 多特征融合 定量回归

中国科学院战略性先导科技专项子课题(A类)

XDA23010204

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(9)