首页|基于可见-近红外光谱和化学计量学的带壳香榧坏籽快速识别

基于可见-近红外光谱和化学计量学的带壳香榧坏籽快速识别

扫码查看
带壳香榧籽在后熟处理及炒制过程中会产生无法食用的香榧坏籽,在不破坏外壳的情况下人工无法准确识别和消除,将影响香榧籽整体品质.利用两种近红外光谱仪采集带壳正常香榧籽和香榧坏籽的光谱数据,研究比较8种光谱预处理方法,采用单一波长选择方法(无信息变量消除算法、竞争性自适应重加权采样算法、连续投影算法和子窗口重排分析法)及联合波长选择方法对两个光谱仪的光谱数据进行特征波长筛选,应用线性判别分析(LDA)和支持向量机方法(SVM)建立香榧坏籽的识别模型并比较模型性能的优劣,以确定不同光谱仪下较优的特征波长选择方法.研究结果表明,对于光谱仪1,预处理未能有效提高模型性能,连续投影算法为最优的特征波长选择方法,所建立的LDA和SVM模型的预测集敏感性、特异性及准确率分别为97.10%、95.00%、96.00%和97.10%、97.50%、97.30%,优于全波段模型,建模波长变量数由661个缩减到9个,仅占原波长变量数的1.36%.对于光谱仪2,基线校正为最优的预处理方法,子窗口重排分析法为最优的特征波长选择方法,所建立的LDA和SVM模型的预测集敏感性、特异性及准确率分别为100.00%、92.50%、96.00%和100.00%、95.00%、97.30%,与全波段模型性能一致,建模波长变量数由155个缩减到55个,占原波长变量数的35.48%.近红外光谱技术可以较好地识别带壳香榧坏籽,合适的特征波长选择方法可以有效筛选特征波长,简化模型,并提高模型的准确率和稳定性.研究还发现1 000~1 300 nm光谱波段与香榧籽的淀粉、脂肪和蛋白质含量有关,较适合于带壳香榧坏籽的鉴别.该研究为带壳香榧坏籽的快速无损识别提供一定参考.
Rapid Identification of Shelled Bad Torreya Grandis Seeds Based on Visible-Near Infrared Spectroscopy and Chemometrics
Inedible shelled Torreya grandis bad seeds will be produced during post-ripening treatment and frying,which cannot be accurately recognized and rejected manually without destroying the shells,affecting the overall quality of shelled Torreya grandis seeds.This study used two near-infrared spectrometers to collect spectral data of shelled normal and bad Torreya grandis seeds and eight spectral pre-processing methods was studied and compared.Then,a single wavelength selection method(Uninformative Variables Elimination,Competitive Adaptive Reweighted Sampling,Successive Projections Algorithm,and Subwindow Permutation Analysis)and a joint wavelength selection method were adopted to select characteristic wavelength,and Linear Discriminant Analysis(LDA)and Support Vector Machine(SVM)methods were applied to establish the identification model of Torreya grandis bad seeds.Also,the model's performance was compared to determine the better wavelength selection method for different spectrometers.The results show that for spectrometer 1,preprocessing can not improve the model performance effectively.The Successive Projections Algorithm is the optimal wavelength selection method.The sensitivity,specificity,and accuracy of the LDA and SVM models in the prediction set are 97.10%,95.00%,96.00%and 97.10%,97.50%,and 97.30%,respectively,superior to the full-wavelength model.The number of modeled wavelength variables was reduced from 661 to 9,only 1.36%of the original number of wavelength variables.For spectrometer 2,baseline correction is the optimal preprocessing method,and Subwindow Permutation Analysis is the optimal feature wavelength selection method.The sensitivity,specificity,and accuracy of the prediction sets of the developed LDA and SVM models are 100.00%,92.50%,96.00%and 100.00%,95.00%,and 97.30%,which are consistent with full-band model performance.The number of modeled wavelength variables was reduced from 155 to 55,which is 35.48%of the original number of wavelength variables.It can be seen that near-infrared spectroscopy can better identify the shelled bad Torreya grandis seeds,and the appropriate wavelength selection method can effectively screen the characteristic wavelengths,simplify the model,and improve the accuracy and stability of the model.It is also found that the wavelength range of 1 000~1 300 nm is related to the starch,fat,and protein content of Torreya grandis seeds,making it more suitable for identifying bad Torreya grandis seeds.This study provides a reference for the rapid and nondestructive identification of shelled Torreya grandis bad seeds.

Shelled Torreya grandis seedsVisible-near infrared spectroscopyBad seedsCharacteristic wavelength screening

翁定康、范郑欣、孔令飞、孙通、喻卫武

展开 >

浙江农林大学光机电工程学院,浙江杭州 311300

浙江农林大学林业与生物技术学院,浙江杭州 311300

带壳香榧籽 可见-近红外光谱 坏籽 特征波长筛选

国家自然科学基金项目浙江省重点研发项目浙江省属高校基本科研业务费专项资金项目浙江农林大学科研发展基金项目浙江省教育厅一般项目

320014142020C020192021TD0022019FR033Y202250117

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(9)