首页|基于模式识别的X射线荧光光谱法用于土壤重金属快速检测

基于模式识别的X射线荧光光谱法用于土壤重金属快速检测

扫码查看
土壤重金属的现场快速准确检测是实现土壤重金属污染防治的关键,便携式X射线荧光光谱仪可实现土壤中典型重金属的现场无损快速检测,且具有操作简单和无需消解处理的优势.基于该设备的X射线荧光光谱重金属分析方法受土壤基体效应影响严重,导致其检测准确度受限,需通过基体相似的标准样品进行校正,故将基于模式识别的基体成分分类方法和标准曲线法相结合,实现对土壤中典型重金属的精准分析.以我国砖红壤、水稻土、黑土、潮土、黄棕壤和黄红壤等6种典型土壤的X射线荧光光谱和重金属含量为数据集,采用5点3次窗口平滑、最大最小值归一化方法和主成分分析(PCA)对光谱数据进行处理,以PCA降维后的前5个主成分作为输入特征变量,土壤类别为标签,建立基于径向基函数(RBF)的支持向量机(SVM)模式识别模型,实现基体成分的相似性分类,模型的超参数优化采用角蜥蜴优化算法,优化后的核参数g为0.0381,惩罚因子c为7.8529,此时5折交叉验证正确率为100%.定量方法为标准曲线法,6类土壤中Cr的相关系数为0.994 7~0.999 3,Ni的相关系数为0.986 8~0.999 4,Cu的相关系数为0.992 9~0.999 9,Zn的相关系数为0.984 1~0.999 8,Pb的相关系数为0.987 7~0.999 6,As&Pb的相关系数为0.961 3~0.999 5,在同一基体下,重金属线性关系较佳.采用建立RBF-SVM模式识别模型对预测集24个样品进行预测,预测结果表明6类土壤的分类正确率为100%,未出现错误分类.根据分类结果,选择对应的标准曲线进行定量分析.结果表明Cr、Ni、Cu、Zn、Pb和As的预测平均相对误差分别为2.24%、3.66%、2.72%、2.15%、2.13%和5.55%,均低于6%.说明RBF-SVM模型结合标准曲线法对土壤中典型重金属的快速检测具有很好的适用性,有望用于实际土壤典型重金属的快速定量分析与检测.
Pattern Recognition-Based X-Ray Fluorescence Spectroscopy for Rapid Detection of Heavy Metals in Soil
The rapid and precise detection of heavy metals in soil is the key to the efficacious prevention and remediation of soil contamination.Employing a portable X-ray fluorescence spectrometer facilitates the in-situ,non-destructive,and rapid detection of typical heavy metals.This advanced analytical technique also obviates the need for elaborate sample digestion procedures.However,the accuracy of the XRF-based heavy metal detection technique is significantly influenced by the soil matrix effects,which considerably limits the accuracy of such measurements.Calibration against standard soil with a similar matrix is imperative.As a result,this study combined pattern recognition and the standard curve method to achieve a precise analysis of typical heavy metals in various soils.The dataset comprises the X-ray fluorescence spectra and heavy metal contents across six characteristic soil types collected within China:humid-thermo ferritic,paddy soils,black soils,flavor-aquic soils,yellow-brown earth,and yellow-red earth.The spectral data is refined using a five-point,three-times window movement smoothing algorithm and a min-max normalization approach,followed by principal component analysis(PCA).Post-PCA dimensionality reduction's first five principal components are employed as input feature variables,with soil types serving as labels.A predictive model based on a Radial Basis Function(RBF)kernel for Support Vector Machine(SVM)is constructed to categorize soils by matrix similarity.The model's hyperparameters are optimized using the Horned lizard optimizer algorithm,yielding an optimized kernel function(g)of 0.038 1 and a penalty factor(c)of 7.852 9,with a correct classification rate of 100%under a five-fold cross-validation.The quantitative analysis utilizes the standard curve method.For the six soil types,the correlation coefficients for Chromium(Cr)ranged from 0.994 7 to 0.999 3,for Nickel(Ni)from 0.986 8 to 0.999 4,for Copper(Cu)from 0.992 9 to 0.999 9,for Zinc(Zn)from 0.984 1 to 0.999 8,and for Lead(Pb)from 0.987 7 to 0.999 6.Furthermore,the correlation coefficients of Arsenic and Lead(As&Pb)ranged from 0.961 3 to 0.999 5.The above results indicate a favorable linearity for heavy metals within the same matrix.Subsequently,the established RBF-SVM model and standard curves are applied to a prediction set of 24 samples.The predictive outcome corroborates a 100%classification accuracy for the six soil types.Upon classification,corresponding standard curves are utilized for quantitative analysis.The results show that the average relative prediction errors for Cr,Ni,Cu,Zn,Pb,and As are 2.24%,3.66%,2.72%,2.15%,2.13%,and 5.55%,respectively,below 6%.These findings prove the excellent applicability of the RBF-SVM model in combination with the standard curve method for the rapid detection of typical heavy metals in soil.This algorithm will facilitate the rapid quantitative detection of typical heavy metals in natural soil.

SoilHeavy metalsSupport vector machinesPattern recognitionRapid detection

倪晓芳、张长波、唐晓勇

展开 >

上海化工研究院有限公司,上海 200062

工信部工业(土壤污染修复)产品质量控制和技术评价实验室,上海 200062

上海化工院环境工程有限公司,上海 200062

土壤 重金属 支持向量机 模式识别 快速检测

国家重点研发计划项目上海市青年科技启明星计划项目

2020YFC180730422QB1402900

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(9)