首页|多特征融合的近红外脑血氧随机森林分类识别

多特征融合的近红外脑血氧随机森林分类识别

扫码查看
为了解决脑机接口中功能性近红外脑功能成像信号的数据分类精度低、模型稳定性差的问题,提出研究前额叶脑区在刺激期间脑血氧浓度的变化,并对前额叶脑区实验数据进行任务与休息的状态二分类识别研究,将提取的单特征和多特征融合分别作为模型的输入,通过模型分类结果验证多特征融合可以在一定程度上提高分类精度的猜想.首先针对前额叶脑区设计实验范式:词语流畅性认知实验.采集数据的设备是中国丹阳慧创设备NirSmart,采样率为11 Hz,空间分辨率为3 cm.设备使用雪崩二极管和超微光探测技术,灵敏度可达0.1 pW.之后使用Homer2工具箱对采集数据进行预处理,以及使用MATLAB进行特征的提取、随机森林模型的构建,使用特征重要性和误差曲线两个指标来评估模型的性能,最后将随机森林模型运行20次的平均值作为最终的分类结果.实验结果表明,多特征融合与单特征相较提高了最终的分类结果.其中三特征融合状态二分类结果最佳为93.84%,比单特征均值、斜率、峰峰值分别提高了 2.32%、4.25%、5.33%.由实验数据分类结果可知:多特征融合在一定程度上可以提高近红外脑功能成像分类的精度,且随机森林模型性能稳定,有望解决以往分类精度不高,模型稳定性差的问题,进一步推动脑机接口系统的发展与应用.
Near-Infrared Random Forest Classification and Recognition Based on Multi-Feature Fusion
To solve the problem of low data classification accuracy and poor model stability of functional near-infrared brain functional imaging signals in brain-computer interfaces,this paper proposes to study the changes of cerebral blood oxygen concentration in the prefrontal brain region during the stimulation period and carry out a study of the state binary classification identification of task and rest on the experimental data of the prefrontal brain region,and take the extracted single feature and multi-feature fusion as the inputs of the model,respectively,and validate the results of the classification through the model The conjecture that multi-feature fusion can improve the classification accuracy to some extent.Firstly,this paper designs an experimental paradigm for the prefrontal brain region:word fluency cognition experiment.The device used to collect the data is NirSmart,a Danyang Huichuang device from China,with a sampling rate of 11 Hz and a spatial resolution of 3 cm.The device uses avalanche diode and ultramicro photo detection technology,and the sensitivity is up to 0.1 pW.After that,the collected data are preprocessed using the Homer2 toolbox,the features are extracted using MATLAB,and the Random Forest model is constructed using two metrics of feature importance and error curve to evaluate the classification results.Importance and error curves were used to evaluate the performance of the model.Finally,the average of 20 runs of the random forest model was used as the final classification result.The experimental results show that multiple features can improve the final classification result compared with a single feature.The best second classification result for the case of three-feature fusion is 93.84%,2.32%,4.25%,and 5.33%,higher than the single-feature mean,slope,and peak-to-peak value,respectively.From the results of the experimental data,it can be seen that multi-feature fusion can improve the accuracy of near-infrared brain functional imaging classification to a certain extent.The performance of the random forest model is stable,which is expected to solve the previous problems of low classification accuracy and poor model stability and promote the development and application of brain-computer interface systems.

Near-infraredCerebral blood oxygenRandom forestMulti-feature fusionClassify

谢惜如、罗海军、李国楠、范鑫燕、王康宇、李忠洪、王洁

展开 >

重庆师范大学物理与电子工程学院,光电功能材料重庆市重点实验室,重庆 401331

重庆师范大学,重庆国家应用数学中心,重庆 401331

近红外 脑血氧 随机森林 多特征融合 分类

国家自然科学基金项目重庆市自然科学基金面上项目重庆市教委重点项目

51507023cstc2020jcyjmsxmX0726KJZD-K202100506

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(10)