首页|基于多目标筛选堆叠回归的光谱反射率重建

基于多目标筛选堆叠回归的光谱反射率重建

扫码查看
物体的光谱反射率完全决定了其物体色,因此研究光谱反射率对于色彩信息要求较高的行业具有重大意义.直接获取光谱反射率需要精密且昂贵的设备,而通过建立模型,由低成本的数码相机等设备获取的RGB响应值去预测光谱反射率,可以大大降低成本.基于回归方法的光谱反射率重建算法受到广泛关注,其核心是建立RGB向量到光谱反射率向量间的映射关系.对于大多数物体而言,其表面的光谱反射率曲线具有平滑属性,因此,光谱反射率分量之间具有一定的相关性.而已有的算法都是对光谱反射率向量每一个维度独立地建立预测模型,没有将光谱反射率分量之间的相关性利用起来.与传统的单输出回归方法不同,多目标堆叠回归方法通过将首次预测输出值重新注入输入端来利用输出端之间的相关性.基于多目标堆叠回归的光谱反射率重建取得了重要的进展;然而,传统的多目标堆叠回归方法存在着易受首次预测输出值误差影响的问题.针对这一问题,提出一种新的多目标堆叠方法,对于首次预测输出值进行筛选,从中选出误差较小的部分作为输入,以此来保证下一步建立的模型精度.该筛选方法可以在不知道真实值的情况下,极大程度地保留误差较低的部分样本.实验数据集来源为ICVL高光谱图像数据库,评价指标为均方根误差与色度误差.实验结果表明,所提出的多目标筛选堆叠回归可以有效克服传统多目标堆叠回归所存在的问题,做到比无堆叠时的误差更小,说明提出的方法可以有效地利用光谱反射率分量之间的相关性.
Spectral Reflectance Reconstruction Based on Multi-Target Screening Stacking Regression
The spectral reflectance of an object completely determines its surface color;therefore,studying the spectral reflectance is of great significance for industries with high requirements for color information.Direct acquisition of spectral reflectance requires precise and expensive equipment.However,the cost of obtaining spectral reflectance can be greatly reduced by establishing a model that predicts spectral reflectance from RGB response values obtained from low-cost devices such as digital cameras.Spectral reflectance reconstruction algorithms based on regression methods have received widespread attention,and their core goal is to establish a mapping relationship between RGB vectors and spectral reflectance vectors.For most objects,the spectral reflectance curves of their surfaces have the property of smoothing.Therefore,there is a certain correlation between the spectral reflectance components.However,the existing algorithms have built prediction models for each dimension of the spectral reflectance vector separately,without taking advantage of the correlation between the spectral reflectance components.Unlike traditional single-output regression methods,the multi-target stacking regression method utilizes the correlation between outputs by reinjecting the first predicted output values into the inputs,and this paper studies spectral reflectance reconstruction based on multi-target stacking regression.However,the traditional multi-target stacking regression method is susceptible to the influence of errors in the first predicted output values.To address this problem,this paper proposes a screening method for the first predicted output value,selecting the part with less error as input to ensure the accuracy of the next model-building step.This screening method can preserve the samples with lower errors to a great extent,even without knowing the true values.The experimental data set in this paper is sourced from the ICVL hyperspectral image database,and the evaluation metrics are root mean square error and chromaticity error.The experimental results indicate that the proposed multi-target screening stacking regression can overcome the problems of multi-target stacking regression and achieve smaller errors than without stacking.Therefore,the proposed method in this paper can better utilize the correlation between spectral reflectance components.

Spectral reflectance reconstructionMulti-target stacking regressionScreening conditionNon-linear fitting

李日浩、马媛、张伟峰

展开 >

华南农业大学数学与信息学院,广东广州 510642

光谱反射率重建 多目标堆叠回归 筛选条件 非线性拟合

国家自然科学基金项目国家自然科学基金项目广州市自然科学基金项目

1227118161375006202201010426

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(10)