首页|基于三维荧光光谱结合2D-LDA的食用油掺假鉴别研究

基于三维荧光光谱结合2D-LDA的食用油掺假鉴别研究

扫码查看
食用油掺假行为严重威胁消费者的身体健康并扰乱社会市场秩序.研究有效的食用油掺假鉴别方法对于构建安全、可靠的食品供应链和提升消费者福祉具有重要意义.以食用油中的香油为例开展食用油掺假鉴别方法研究.通过芝麻香精与玉米油、大豆油以及菜籽油三种食用油配制了3类掺假香油;使用FLS920稳态荧光光谱仪采集了这3类掺假香油以及不同品牌香油共计45个实验样本的三维荧光光谱数据;基于2D-LDA方法提取了实验样本的二维特征,并以此为依据采用最近邻分类原理实现了掺假食用油的准确鉴别.将所述方法与平行因子结合非线性判别分析(PARAFAC-QDA)、多维偏最小二乘——判别分析(NPLS-DA)两种方法进行了对比.结果表明,2D-LDA方法能够有效提取掺假香油的二维特征.这些特征能够使不同类别的实验样本在投影子空间中实现最大程度分离;同时可使相同类别的实验样本在子空间中尽可能地紧密聚集,进而使得样本在低维子空间中具有更好的可分性,从而获得了100%的鉴别准确率.而PARAFAC-QDA和NPLS-DA两种方法仅分别获得了85%和95%的鉴别准确率.2D-LDA方法相比于这两种方法在食用油掺假鉴别特别是现场快速检测的实际应用中更具优势和潜力,其鉴别过程与结果更加简捷和精确.研究为现场食品安全监管提供了一种高效可行的新方案.
Identification of Adulterated Edible Oils Based on 3D Fluorescence Spectroscopy Combined With 2D-LDA
The adulteration of edible oil seriously threatens consumers'physical health and disrupts the social market order.Therefore,developing effective methods for identifying adulterated edible oil is crucial to establishing a safe and reliable food supply chain and enhancing consumer welfare.This article studies a method to identify adulterated edible oil using sesame oil as a case study.The study first formulated three types of contaminated sesame oil by adding sesame flavor,corn oil,soybean oil,and rapeseed oil.The FLS920 steady-state fluorescence spectrometer was then employed to collect 3D fluorescence spectrum data from 45 experimental samples,including these three types of contaminated sesame oil and different brands of pure sesame oil.Subsequently,two-dimensional features were extracted from the experimental samples using the 2D-LDA method.The principle of nearest-neighbor classification was applied to identify adulterated edible oils accurately.Moreover,the proposed method was compared with the PARAFAC-QDA and NPLS-DA methods.The results demonstrated that the 2D-LDA method effectively extracted two-dimensional features characterizing adulterated sesame oil.These features facilitated maximum separation of different classes of experimental samples in the projection subspace.Simultaneously,they allowed experimental samples of the same class to cluster closely in the subspace.The distinct characteristics of these features enhanced sample separability in the low-dimensional subspace,resulting in 100%identification accuracy.In contrast,the PARAFAC-QDA and NPLS-DA methods achieved 85%and 95%discrimination accuracies,respectively.Hence,the 2D-LDA method outperformed these two methods in identifying edible oil adulteration,offering a simpler and more accurate identification process and results.This study provides an efficient and feasible new solution for on-site food safety supervision.

Edible oil3D fluorescence spectroscopy2D-LDAAdulteration identification

姜海洋、崔耀耀、贾彦国、谌志鹏

展开 >

燕山大学信息科学与工程学院计算机科学与工程系,河北秦皇岛 066004

唐山师范学院计算机科学技术系,河北唐山 063000

石家庄学院机电学院,河北石家庄 050035

食用油 三维荧光光谱 二维线性判别分析(2D-LDA) 掺假鉴别

国家自然科学基金项目河北省高等学校科学技术研究项目唐山市市级科技计划项目

62175208BJK202306721130212D

2024

光谱学与光谱分析
中国光学学会

光谱学与光谱分析

CSTPCD北大核心
影响因子:0.897
ISSN:1000-0593
年,卷(期):2024.44(11)