首页|基于数字孪生技术的往复式空气压缩机效率预测方法研究

基于数字孪生技术的往复式空气压缩机效率预测方法研究

Research on efficiency prediction method of reciprocating air compressor based on digital twin technology

扫码查看
通过建立往复式空气压缩机数字孪生体模型,实现压缩机效率预测和参数寻优的方法,具有灵活、成本低、通用性好的优势.但是在多变量条件下,传统的基于BP神经网络孪生模型训练时间长、工作量大,寻优过程易陷入局部最优解,不易实现全局最优.针对传统孪生体模型存在的问题,提出了基于CIWOA-BPNN算法的孪生体模型构建方法,通过主成分分析法确定孪生体模型关键指标,在BPNN模型基础之上引入改进的鲸鱼优化算法.研究表明,基于CIWOA-BPNN算法的孪生体模型有效避免了 BPNN模型陷入局部最优解.用CIWOA-BPNN算法预测压缩机效率相对误差小于0.6%,决定系数为0.997 75,与传统模型相比大幅提升了预测精度.
The method for compressor efficiency prediction and parameter optimization by establishing the reciprocating air compressor digital twin model has the advantage of flexibility,low cost,and good versa-tility.However,the traditional twin model based on the BP neural network(BPNN)has lots of shortcom-ings,such as longer training time to establish a module,easily falling into the local optimal solution,and difficulty in achieving the global optimal solution.To solve these problems,a novel digital twin model based on the CIWOA-BPNN algorithm is put forward to determine the key indexes by the principal compo-nent analysis method,in which a CIWOA algorithm is introduced to improve the BPNN's performance.The results show that the new CIWOA-BPNN twin model effectively avoids falling the local optimal prob-lem.The relative error of CIWOA-BPNN is less than 0.6%,and the coefficient of determination is 0.997 75,which greatly improves the prediction accuracy compared with the traditional model.

reciprocating air compressorefficiencyBP neural networkimproved whale optimization al-gorithm

余建平、胡爽、刘兴旺、田有文、仇宏伟、AKOTO Emmanuel

展开 >

兰州理工大学石油化工学院,甘肃兰州 730050

往复式空气压缩机 效率 BP神经网络 改进的鲸鱼优化算法

高端压缩机及系统技术全国重点实验室基金

SKL-YSJ202110

2024

兰州理工大学学报
兰州理工大学

兰州理工大学学报

CSTPCD北大核心
影响因子:0.57
ISSN:1673-5196
年,卷(期):2024.50(1)
  • 16