首页|基于LSTM的智能手机3D手写识别

基于LSTM的智能手机3D手写识别

扫码查看
针对传统传感器需要在特定的空间区域内才能进行人机交互,极易受到外部环境因素干扰的问题,提出一种新的基于长短时记忆神经网络(LSTM)的智能手机3D空间手写识别方法,用于非特定三维空间中实现的人机交互.首先,利用智能手机内置三轴加速度传感器,采集手部运动数据,并将采集的数据进行预处理操作,构建3D手写识别数据集;然后,基于LSTM构建3D手写识别模型,并利用构建的数据集进行训练;最后,利用训练后的模型实现智能手机的3D手写分类识别.通过在本文自建的非依赖用户数据集上进行测试,实验结果表明,该识别方法可以实现86.4%的准确率,88.1%的召回率,88.4%的精准率和88.0%的Fi分数.
3D handwriting recognition of smartphone based on LSTM
Traditional sensors are prone to receive the interference of external environmental factors due to achieving human-machine interaction in specific spatial area.3D handwriting recognition of smartphones based on the long short-term memory(LSTM)neural network is proposed,which can be used in human-machine interaction in non-specific 3D spaces.First,three-axis acceleration sensors of smartphones are used to collect data which perform pre-processing operations to construct a 3D handwriting recognition dataset.Then,the 3D handwriting recognition model based on LSTM is constructed and pre-trained by a-dopting the constructed datasets.Finally,the trained model is applied to implement 3D handwriting classi-fication recognition for smartphones.By testing on a self-built non-dependent user dataset,experimental results show that the proposed model can achieve the accuracy rate of 86.4%,recall rate of 88.1%,preci-sion rate of 88.4%,and F1 score of 88.0%.

smartphoneacceleration sensor3D handwriting recognitionLSTM

张乐、包广斌、郭琳、武立

展开 >

商洛学院电子信息与电气工程学院,陕西商洛 726000

兰州理工大学计算机与通信学院,甘肃兰州 730050

陕西省商洛市体育运动中心,陕西商洛 726000

智能手机 加速度传感器 手写识别 LSTM

陕西省教育厅专项科研计划项目甘肃省自然科学基金兰州市科技计划项目商洛学院科研项目

22JK036518JR3RA1562017-4-10521SKY003

2024

兰州理工大学学报
兰州理工大学

兰州理工大学学报

CSTPCD北大核心
影响因子:0.57
ISSN:1673-5196
年,卷(期):2024.50(1)
  • 15