首页|四元数矩阵方程(A1XB1,…,AkXBk)=(C1,…,Ck)的极小范数最小二乘Toeplitz解

四元数矩阵方程(A1XB1,…,AkXBk)=(C1,…,Ck)的极小范数最小二乘Toeplitz解

扫码查看
基于四元数矩阵实表示,结合矩阵H-表示和矩阵半张量积提出一种求解四元数矩阵方程(A1XB1,…,AkXBk)=(C1,…,Ck)的极小范数最小二乘Toeplitz解的有效方法,给出该四元数矩阵方程存在Toeplitz解的充要条件及通解表达式.给出数值算法并通过算例分别从误差与计算时间两个方面验证该方法的有效性.
Minimal norm least square Toeplitz solution of quaternion matrix equation(A1XB1,…,AkXBk)=(C1,…,Ck)
Based on the real representation of the quaternion matrix,combined with the matrix H-repre-sentation and semi-tensor product of matrices,an effective method for solving the minimal norm least square Toeplitz solution of the quaternion matrix equation(A1XB1,…,AkXBk)=(C1,…,Ck)is proposed in this paper.The necessary and sufficient condition for the existence of Toeplitz solution to the quaternion matrix equation are provided,and a general expression of solutions is also obtained.The numerical algo-rithm is given,and examples are given to verify the effectiveness of the method in terms of error and com-putation time.

quaternion matrix equationsemi-tensor product of matricesthe minimal norm least square Toeplitz solutionreal representationH-representation

石俊岭、李莹、王涛、张东惠、邱新

展开 >

聊城大学数学科学学院,山东聊城 252000

四元数矩阵方程 矩阵半张量积 极小范数最小二乘Toeplitz解 实表示 H-表示

国家自然科学基金山东省自然科学基金

62176112ZR2020MA053

2024

兰州理工大学学报
兰州理工大学

兰州理工大学学报

CSTPCD北大核心
影响因子:0.57
ISSN:1673-5196
年,卷(期):2024.50(1)
  • 14