首页|电动汽车IGBT剩余使用寿命预测

电动汽车IGBT剩余使用寿命预测

扫码查看
引入一种基于贝叶斯优化(BOA)的双向长短时记忆网络(Bi-LSTM),同时结合注意力机制,应用于绝缘栅双极型晶体管(IGBT)剩余使用寿命预测,所提方法可有效提高IGBT剩余使用寿命预测的准确性.通过IGBT加速老化试验收集VCE-on,验证了其作为失效特征参数的可行性,并将其作为实验数据集对所提方法进行仿真验证.实验分析结果表明,所提的混合预测模型与经典LSTM及其他预测模型相比,有更低的退化预测误差,具备较高的理论意义和实践价值.
Remaining useful life prediction of IGBT in electric vehicles
As one of the core components of electric vehicles,IGBTs'health monitoring and remaining life prediction play a vital role in proactive maintenance.The Bi-LSTM model based on Bayesian optimiza-tion and attention mechanism is proposed to predict the remaining useful life of IGBT in this paper.The proposed method can effectively improve the accuracy of IGBT remaining service life prediction.VCE-on through IGBT accelerated aging test is collected in this study,verifying its feasibility as a failure character-istic parameter.This data is used as an experimental data set to validate the proposed method through sim-ulation.The experimental analysis results show that the proposed hybrid prediction model has lower deg-radation prediction error than the classical LSTM and other prediction models,demonstrating significant theoretical and practical value.

electric vehicles of IGBTremaining life predictionBayesian optimization algorithmatten-tion mechanismbidirectional long short-term memory

杜先君、王紫阳

展开 >

兰州理工大学电气工程与信息工程学院,甘肃兰州 730050

兰州理工大学甘肃省工业过程控制重点实验室,甘肃兰州 730050

电动汽车IGBT 剩余寿命预测 贝叶斯优化算法 注意力机制 双向长短时记忆网络

国家自然科学基金甘肃省教育厅创新基金

615630322021A-027

2024

兰州理工大学学报
兰州理工大学

兰州理工大学学报

CSTPCD北大核心
影响因子:0.57
ISSN:1673-5196
年,卷(期):2024.50(2)
  • 6