首页|基于KPCA特征量降维的风电并网系统暂态电压稳定性评估

基于KPCA特征量降维的风电并网系统暂态电压稳定性评估

扫码查看
针对电力系统暂态电压稳定性评估中所需特征量数据庞大,影响模型训练时间,降低计算效率等问题,提出了一种基于核主成分分析方法KPCA和CPSO-BP组合的风电并网系统暂态电压稳定性评估方法.首先根据输入特征采集原始特征集,采用核主成分分析算法对特征量进行非线性数据处理,提取出最优的特征集.然后将降维后的特征集作为CPSO-BP神经网络输入量进行监督学习,将得到的模型按照临界故障切除时间裕度值的大小进行分类,将分类后的样本进行风电并网系统的暂态电压稳定性评估和临界故障切除时间裕度值预测.仿真分析结果表明,对输入特征进行降维,保留重要输入特征量,剔除冗余特征量,不仅简化了模型,还提高了网络评估的准确性和计算效率.
Transient voltage stability assessment of wind power grid connected system based on KPCA feature dimension reduction
Aiming at addressing challenges such as the extensive data requirements for feature extraction,prolonged model training times,and reduced computational efficiency in present assessment,a method for evaluating transient voltage stability in wind power integration systems is proposed based on the combina-tion of kernel principal component analysis(KPCA)and chaos particle swarm optimization(CPSO)and back-propagation(BP)neural network.Firstly,the raw feature set is collected according to the input fea-tures,followed by nonlinear data processing using KPCA to extract the optimal feature set.Then,the re-duced dimension feature set is used as the input of the CPSO-BP neural network for supervised learning.The obtained model is categorized according to the margin of critical fault removal time.The classified samples are used for transient voltage stability evaluation and critical fault removal time margin prediction of wind power grid-connected systems.Finally,the simulation analysis results show that reducing the di-mension of the input features,retaining the important input features,and eliminating the redundant fea-tures,not only simplifies the model but also improves the accuracy and calculation efficiency of network evaluation.

wind power grid connectionkernel principal component analysis algorithmdimension re-ductionCPSO-BP neural networktransient voltage stability assessment

张晓英、史冬雪、张琎、张鑫

展开 >

兰州理工大学电气工程与信息工程学院,甘肃兰州 730050

国网甘肃省电力公司陇南供电公司,甘肃陇南 746000

国网甘肃省电力公司超高压公司,甘肃兰州 730000

风电并网 核主成分分析算法 降维 CPSO-BP神经网络 暂态电压稳定性评估

国家自然科学基金

51867015

2024

兰州理工大学学报
兰州理工大学

兰州理工大学学报

CSTPCD北大核心
影响因子:0.57
ISSN:1673-5196
年,卷(期):2024.50(2)
  • 14