首页|一个含离散型分式核的Hilbert型不等式

一个含离散型分式核的Hilbert型不等式

扫码查看
引入若干正参数,新构建了一个分式型的离散形态的核函数,并借助于权系数的方法,建立了一个二重Hil-bert型级数不等式,并证明此不等式的常数因子是最佳取值.另外,根据余割函数的有理分式展开形式,给出最佳常数因子的余割函数表示形式.通过对参数赋予一些特殊数值,得到了一些已有结果,并且给出了一些新的含特殊核函数的Hilbert型不等式.
A Hilbert-type inequality with a discrete fractional kernel
By introducing several positive parameters,a new fractional discrete kernel function is con-structed.By means of the method of weight coefficients,a double Hilbert series inequality is established,and the constant factor of the newly obtained inequality is proved to be the best possible.Furthermore,based on the rational fraction expansion of the cosecant function,it is also proved that the optimal constant factor can be represented by the cosecant function.At last,by assigning some specific values to the param-eters,some previously known results are obtained,and some new Hilbert-type inequalities with special kernel functions are also presented at the end of the paper.

Hilbert-type inequalityfractional kernel functionrational fraction expansioncosecant function

有名辉、董飞、杨必成

展开 >

浙江机电职业技术学院数学教研室,浙江杭州 310053

广东第二师范学院数学学院,广东广州 510303

Hilbert型不等式 分式型核函数 有理分式展开 余割函数

国家自然科学基金浙江省教育厅科研资助项目浙江机电职业技术学院科教融合孵化工程项目

61772140Y202148139A-0271-23-213

2024

兰州理工大学学报
兰州理工大学

兰州理工大学学报

CSTPCD北大核心
影响因子:0.57
ISSN:1673-5196
年,卷(期):2024.50(3)