首页|基于OVMD-RF方法的风力发电机滚动轴承故障诊断

基于OVMD-RF方法的风力发电机滚动轴承故障诊断

扫码查看
风电机组运行时轴承受到交变应力和冲击载荷,振动信号非线性、不平稳且具有噪声,特征提取不充分.针对风力发电机轴承故障信号处理和特征提取的固有缺陷,提出了基于优化变分模态分解与随机森林算法结合的故障诊断方法.首先,利用乌燕鸥优化算法对变分模态分解的参数进行搜索寻优;然后,利用优化参数的变分模态分解对滚动轴承振动信号进行分解,获得模态分量;最后,以峰值、峭度和包络熵构建融合特征训练集,并输入至随机森林分类器进行模型训练,实现故障识别.实例分析的结果表明,该方法识别风力发电机轴承故障的准确率高达100%,可实现故障的准确判别.
Rolling bearing fault diagnosis of wind turbine based on OVMD-RF method
The bearings of the wind turbine are subjected to alternating stresses and shock loads during operation,leading to nonlinear,non-stationary,and noisy vibration signals,thus rendering conventional feature extraction insufficient.Aiming at the inherent defects in the wind turbine bearings failure message processing and feature extraction for wind turbine bearing fault diagnosis,a novel method has been pro-posed on the basis of the optimal Variational Modal Decomposition combined with a random forest algo-rithm.Firstly,The technique utilizes the sooty tern optimization algorithm to conduct a search optimiza-tion of the values in the variables for the variational modal decomposition.Subsequently,the method with optimized parameters is employed to decompose the vibration signal of rolling bearing signals to obtain mo-dal components.Finally,the peak value,kurtosis,and envelope entropy are applied to construct the fu-sion feature training set and input them into the random forest classifier to realize fault recognition.The results of the case analysis demonstrate the efficacy of the proposed methodology to identify faults in achie-ving a fault recognition accuracy of up to 100%for wind turbine bearing faults,facilitating accurate fault discrimination.

wind turbinefeature extractionfault diagnosisoptimal variational modal decompositionrandom forest algorithm

郑玉巧、李浩、魏泰

展开 >

兰州理工大学机电工程学院,甘肃兰州 730050

国家风力发电设备质量监督检验中心,甘肃兰州 730050

甘肃省特种设备检验检测研究院,甘肃兰州 730050

风电机组 特征提取 故障诊断 优化变分模态分解 随机森林算法

国家自然科学基金兰州市人才创新创业项目

519650342018-RC-25

2024

兰州理工大学学报
兰州理工大学

兰州理工大学学报

CSTPCD北大核心
影响因子:0.57
ISSN:1673-5196
年,卷(期):2024.50(4)