首页|基于深度学习的金属表面缺陷检测

基于深度学习的金属表面缺陷检测

扫码查看
由于金属产品生产过程中各种因素的影响,金属工件可能会存在一些表面缺陷.这会降低材料强度,缩短工件寿命,并且增加安全风险.因此,需要对金属产品表面进行质量检测,这也是保证工业生产质量的关键环节.与传统人工检测相比,基于机器视觉的表面缺陷检测方法具有速度快、精度高等优点.提出了一种改进的YOLOv5算法,用于金属表面缺陷检测研究,在原YOLOv5算法的基础上将空间金字塔池化结构SPP替换成SPPCSPC,提高模型对金属表面缺陷的检测能力.为了验证算法的有效性,分别采用YOLOv3,YOLOv4,YOLOv5及改进的YOLOv5算法对1 800张金属表面缺陷样本图像进行对比测试.结果表明,与YOLOv3,YOLOv4,YOLOv5原算法相比,改进的YOLOv5算法平均目标检测精度均值分别提高了 4.3%,3.3%,2%.通过大量图片的学习,可以获得更好的精确率.
Metal surface defect detection based on deep learning
Due to various factors in the production of metal products,some surface defects may exist on metal workpieces.This can reduce the strength of the material,shorten the life of the workpiece,and increase the safety risk.Therefore,it is necessary to carry out quality inspection on the surface of metal products,which is also a key link to ensure the quality of industrial production.Compared with the traditional manual inspection,the machine vision-based surface defect detection method has the advantages of high speed and high accuracy.An improved YOLOv5 algorithm is proposed for metal surface defect detection research,which replaces the spatial pyramid pooling structure SPP with SPPCSPC on the basis of the original YOLOv5 algorithm to improve the model's ability to detect defects on metal surfaces.In order to verify the effectiveness of the algorithm,a comparative test is conducted on 1 800 samples of metal surface defects using YOLOv3,YOLOv4,YOLOv5,and an enhanced YOLOv5 algorithm.The results show that compared with the original algorithms of YOLOv3,YOLOv4,and YOLOv5,the mean average target detection accuracy of the improved YOLOv5 algorithm has been improved by 4.3%,3.3%,and 2%,respectively.Abetter accuracy rate can be obtained by learning from a large number of images.

metal surface defectsspatial pyramidal pooling structuremachine visiontarget detection

李涛、刘俊江、张聪、朱磊

展开 >

齐齐哈尔大学 通信与电子工程学院,黑龙江齐齐哈尔 161006

金属表面缺陷 空间金字塔池化 机器视觉 目标检测

2022年度黑龙江省大学生创新创业训练计划项目黑龙江省教育科学"十四五"规划重点课题

S202210232132GJB1422319

2024

高师理科学刊
齐齐哈尔大学

高师理科学刊

影响因子:0.351
ISSN:1007-9831
年,卷(期):2024.44(1)
  • 17