首页|基于麻雀搜索算法的降水量预测

基于麻雀搜索算法的降水量预测

扫码查看
为提高对非线性和时序性降水量数据的准确预报,建立了基于麻雀搜索算法的组合预测模型.利用经验模态分解挖掘数据多维度特征,使用长短期记忆人工网络对数据进行预测,结合麻雀搜索算法对预测模型的超参数进行优化,提高了经验模态分解-长短期记忆人工网络模型网格化寻参的效率和预测精度.实证结果表明,与单一的长短期记忆人工网络模型和经验模态分解-长短期记忆人工网络模型相比,经过优化后的基于麻雀搜索算法的组合预测模型的性能和预测效果更好,其各类误差均有所降低,具有实际意义.
Precipitation prediction based on sparrow search algorithm
To improve the accurate prediction of nonlinear and temporal precipitation data,a combined prediction model based on the sparrow search algorithm was established.Empirical mode decomposition was used to mine multidimensional features of the data,and long short-term memory artificial networks were used to predict the data,the hyper parameters of the prediction model were optimized using the sparrow search algorithm,the efficiency and prediction accuracy of grid based parameter search in empirical mode decomposition-long short term memory artificial network models is improved.Empirical results show that compared with a single long short term memory artificial network model and the empirical mode decomposition-long short term memory artificial network model,the optimized combination prediction model based on the sparrow search algorithm has better performance and prediction effect,and all types of errors are reduced,which has practical significance.

precipitation forecastsparrow search algorithmempirical mode decomposition-long short term memory artificial network model

李淼、宇世航

展开 >

齐齐哈尔大学 理学院,黑龙江 齐齐哈尔 161006

降水量预测 麻雀搜索算法 经验模态分解-长短期记忆人工网络模型

黑龙江省省属高校基本科研业务费专项齐齐哈尔大学研究生创新科研项目齐齐哈尔大学教育科学研究项目

145209138QUZLTS_CX2023051GJQTYB202105

2024

高师理科学刊
齐齐哈尔大学

高师理科学刊

影响因子:0.351
ISSN:1007-9831
年,卷(期):2024.44(5)
  • 15