首页|基于MaxEnt模型的环境变量和物种分布数据对四川牡丹潜在适生区域预测的影响

基于MaxEnt模型的环境变量和物种分布数据对四川牡丹潜在适生区域预测的影响

扫码查看
MaxEnt模型被广泛应用于物种潜在适生区预测研究,以四川牡丹为例,设置不同的环境变量和物种分布数据,构建四川牡丹适生区预测模型,通过对适生区预测结果的空间和概率分布差异分析,探讨环境变量和物种分布数据对MaxEnt模型适生区预测的影响.结果显示,地形因子对适生区的预测结果严重泛化,气候因子的预测效果则较好,是影响四川牡丹分布的重要环境要素;物种分布数据所蕴含的信息量会造成适生区预测结果的差异.在构建MaxEnt模型预测物种适生区时,需要考虑物种的生态需求,分析环境变量和物种分布数据对预测结果产生的影响,选择影响物种分布的关键环境因子和尽量全面反映物种分布信息的分布数据.
Effects of Environmental Variables and Species'Distribution Data in MaxEnt Modeling on Potential Suitable Habitats Prediction of Paeonia decomposita
The MaxEnt model has been widely used in the prediction of potential suitable habitats of species.This study investigated the influence of environmental variables and species'distribution data in MaxEnt modeling of potential suitable habitats prediction by constructing models with different environmental variables and species'distribution data,using Paeonia decomposita as a case study.The influence of environmental variables and species'distribution data on the prediction of the suitable habitats prediction of MaxEnt model was discussed by analyzing the spatial and probability distribution differences of the prediction results.The results show extremely poor effects when only terrain factors are used,that the predicted areas are severely generalized.While the climatic factors show a better result,and it is an important environmental factor affecting the distribution of P.decomposita in Sichuan.The species'distribution data would cause a deviation on the predicted suitable habitats,which is related to the information contained in the species distribution data.When constructing the MaxEnt model to predict the suitable habitats for species,it is necessary to consider the ecological needs of the species and analyze the impact of environmental variables and species distribution data on the prediction results.

MaxEntenvironment variablesspecies distributionpotential suitable habitats

张蜀豫、李陈、张炎周

展开 >

四川大渡河双江口水电开发有限公司,四川阿坝 624000

四川省林业和草原调查规划院,四川成都 610081

MaxEnt模型 环境变量 物种分布 适生区预测

2024

甘肃林业科技
甘肃省林学会 甘肃省林业科学研究院

甘肃林业科技

影响因子:0.647
ISSN:1006-0960
年,卷(期):2024.49(4)