首页|固溶温度对Fe-30Mn-8Al-0.8C低密度钢组织及力学性能的影响

固溶温度对Fe-30Mn-8Al-0.8C低密度钢组织及力学性能的影响

扫码查看
为了研究900~1 100 ℃不同固溶温度处理后Fe-30Mn-8Al-0.8C(质量分数,%)低密度钢的组织演变规律和力学性能,采用O M、EBSD和XRD对奥氏体晶粒的长大行为进行了分析,采用Sallars模型拟合了不同固溶温度和时间处理后的奥氏体晶粒尺寸,建立了奥氏体长大模型.采用拉伸试验机和硬度计测试试验钢的力学性能,根据拉伸试验和显微硬度试验结果,分析了试验钢的微观组织与力学性能的关系.结果表明,试验钢在900 ℃固溶处理90 min后基体组织为奥氏体,但仍存在未溶的κ-碳化物,在其他固溶温度处理后的试样碳化物完全溶解,组织均为奥氏体单相.随着固溶温度的升高,奥氏体晶粒尺寸增大,对奥氏体晶粒长大行为进行拟合分析,给出了固溶温度、保温时间与奥氏体晶粒尺寸关系模型.随着固溶温度升高,伸长率、屈服强度和抗拉强度逐渐降低,由于900 ℃试样中存在未被完全固溶的κ-碳化物导致试样提前断裂,因此在900 ℃固溶处理的试样的伸长率略低于950 ℃试样.试验钢在950 ℃固溶处理90 min后可获得最佳的强度和塑性配合,强塑积可达44.3 GPa·%.随着固溶温度升高,加工硬化率降低,导致抗拉强度的加工硬化项降低.根据Hall-Petch关系,给出了试验钢屈服强度和晶粒尺寸的关系方程,结合奥氏体晶粒长大模型,可以预测固溶态高锰高铝Fe-30Mn-8Al-0.8C奥氏体低密度钢的力学性能.
Effect of solid solution temperature on microstructures and mechanical properties of Fe-30Mn-8Al-0.8C low density steel
To study the microstructure evolution and mechanical properties of Fe-30Mn-8Al-0.8C(wt.%)low densi-ty steel treated at different solid solution temperatures varying from 900 ℃ to 1 100 ℃,the growth behavior of aus-tenite grains was analyzed using OM,EBSD and XRD.Sallars model was adopted to fit the austenite grain size after solution treatments with different temperatures and time.The growth model of austenite grains was established.Tensile tester and hardness tester were used to test the mechanical properties of the experimental steel.The rela-tionship between the microstructure and mechanical properties of the experimental steel was analyzed based on the results of tensile tests and hardness measurements.The results show that the microstructure of experimental steel was austenite with undissolved κ-carbides after solid solution treatment at 900 ℃ for 90 min,which became fully aus-tenitic after solid solution treatment at other temperatures.The austenite grain size increased with solid solution temperature.The austenite grain growth behavior was fitted and analyzed to give a model for the relationship among solid solution temperature,holding time and austenite grain size.The elongation,yield strength and tensile strength decreased gradually with increasing solid solution temperature.Due to the presence of incompletely solidified K-car-bides in the 900 ℃ specimens,which led to early fracture of the specimens,the elongation of the specimens solution-treated at 900 ℃ was slightly lower than that of the 950 ℃ specimens.The optimum strength and plasticity combi-nation of the experimental steel was obtained after solution treatment at 950 ℃ for 90 min.The product of strength and elongation reached 44.3 GPa·%.As the solid solution temperature increased,the work-hardening rate de-creased,resulting in a lower work-hardening term for the tensile strength.According to the Hall-Petch relationship,the equation for the relationship between yield strength and grain size of the experimental steel was given.The me-chanical properties of as-solid-solution Fe-30Mn-8Al-0.8C austenitic low-density steels with high-Mn and high-Al concentration can be predicted by considering the growth model of austenite grain.

low density steelsolid solution treatmentaustenitegrain growthmechanical property

张琪、沈逸平、陈光辉、薛正良、徐光

展开 >

武汉科技大学省部共建耐火材料与冶金国家重点实验室,湖北武汉 430081

钢铁冶金及资源利用省部共建教育部重点实验室,湖北武汉 430081

浙江红鹰集团股份有限公司红鹰新型耐火材料研究院,浙江湖州 313000

低密度钢 固溶处理 奥氏体 晶粒长大 力学性能

国家自然科学基金联合基金重点资助项目中国博士后科学基金面上资助项目

U20A202702022M722486

2024

钢铁
中国金属学会钢铁研究总院

钢铁

CSTPCD北大核心
影响因子:1.204
ISSN:0449-749X
年,卷(期):2024.59(2)
  • 20