首页|含稀土Ce的Fe-Mn-Al轻质高强钢的热力学计算及组织性能

含稀土Ce的Fe-Mn-Al轻质高强钢的热力学计算及组织性能

扫码查看
为了掌握含稀土 Ce的Fe-Mn-Al轻质高强钢相组成及组织性能特点,进而提高其综合力学性能,采用热力学计算和试验相结合的方法,研究含稀土 Ce的Fe-Mn-Al轻质高强钢的相组成、微观组织和典型力学性能,分析900~1 100 ℃固溶处理工艺对其组织性能的影响规律.研究结果表明,试验钢在600~1 200 ℃时的相组成主要包括铁素体、奥氏体、κ碳化物、Ce2C3和NbC等;当温度高于865 ℃时,碳化物几乎全部溶于基体,奥氏体单相区存在于温度865~915 ℃,当温度超过915 ℃时,高温铁素体开始从奥氏体中析出,高温铁素体含量随温度的升高而逐渐升高,915~1 200 ℃温度区间是奥氏体和铁素体的两相区.热锻试验钢中奥氏体体积分数约为86.4%,只有少量带状铁素体沿奥氏体晶界分布,奥氏体晶粒约为28 μm,内部含有大量孪晶.固溶处理后,铁素体含量增加、晶粒开始粗化,大部分带状组织铁素体破碎分离,呈小颗粒状沿奥氏体晶界分布,奥氏体内部有大量孪晶,试验钢抗拉强度显著降低,塑性明显提高.固溶温度为1 000 ℃时,试验钢的抗拉强度为889.6 MPa,断后伸长率为47.1%,强塑积达到最大(42.08 GPa·%),这一方面是由于铁素体含量增加使得试验钢的塑性显著提高,另一方面奥氏体和铁素体组织两相组织分布均匀,且晶粒细小,匀细小的晶粒有利于强塑性的提高,因此相较于900 ℃固溶条件下,试验钢的抗拉强度没有明显下降,而塑性约为原来的2倍.
Thermodynamic calculation,microstructure and property of Fe-Mn-Al lightweight high-strength steel containing rare earth Ce
In order to acquire the phase composition and microstructure and performance characteristics of the Fe-Mn-Al lightweight high-strength steel containing rare earth Ce,and then improve its comprehensive mechanical prop-erties,the phase composition,microstructure and typical mechanical properties of it are studied by combining thermo-dynamic calculations and experiments and the effect of solution treatment temperature at 900-1 100 ℃ on its micro-structure and properties are analyzed.The results show that the main phases of the tested steel includes ferrite,aus-tenite,κ carbide,Ce2C3 and NbC in the temperature range of 600-1 200 ℃.When the temperature is higher than 865 ℃,the carbides are almost completely dissolved in the matrix and the single-phase austenite region exists be-tween 865-915 ℃.When the temperature exceeds 915 ℃,ferrite begins to precipitate from the austenite.The ferrite content gradually increases with the increase of temperature,and the temperature range of 915-1 200 ℃ is the two-phase region of austenite and ferrite.The austenite content in the hot-forged test steel is about 86.4%,with an aver-age austenite grain size of about 28 μm and a large amount of deformation twinning inside.After solution treatment,the ferrite content increases and the grains begin to coarsen.Most of the ferrite in the banded structure is broken and separated,distributed in small particles along the austenite grain boundaries,and a small amount of annealing twins begin to appear inside the austenite.Besides,the tensile strength of the test steel is significantly reduced,and the plasticity is improved.When the solution temperature is 1 000 ℃,the tensile strength of the tested steel is 889.6 MPa,the elongation at break is 47.1%,and the strength-ductility prod uct reaches a maximum of 42.08 GPa·%.It is for that,on the one hand,the plasticity of the test steel is significantly improved due to the increase of ferrite content,and on the other hand,the two-phase structure of austenite and ferrite is evenly distributed,and the grains are fine,which is conducive to the improvement of strong plasticity.Therefore,compared with that at the solution temperature 900 ℃,the tensile strength of the test steel at 1 000 ℃ did not decrease significantly,while the plasticity increased by nearly double.

lightweight high-strength steelsolution treatmentmicrostructurethermodynamic calculationtensile strength

胡志强、张昊轩、赵家琛、崔磊、李新星、王开坤

展开 >

宿迁学院信息工程学院,江苏宿迁 223800

宿迁学院产业技术研究院,江苏宿迁 223800

北京科技大学材料科学与工程学院,北京 100083

轻质高强钢 固溶处理 微观组织 热力学计算 抗拉强度

江苏省高等学校自然科学面上资助项目宿迁市科技计划资助宿迁市高性能复合材料重点实验室宿迁学院多功能材料研发平台

202314160002ZH202215M2021092021pt04

2024

钢铁
中国金属学会钢铁研究总院

钢铁

CSTPCD北大核心
影响因子:1.204
ISSN:0449-749X
年,卷(期):2024.59(2)
  • 22