首页|Q355B板坯高温拉伸晶粒弹塑性变形行为

Q355B板坯高温拉伸晶粒弹塑性变形行为

扫码查看
以国内某钢厂Q355B连铸板坯为研究对象,利用Gleeble-3800热-力模拟试验机,在温度为1 300、1 340和1 380℃以及应变速率为0.001/s条件下开展拉伸试验,并基于获得的晶粒形貌,建立了晶粒组织的代表性体积单元有限元(RVE-FEM)模型,研究揭示了高温拉伸过程中晶粒组织的变形机制和应力-应变分布规律.结果表明,距离断口越近,晶粒组织的平均尺寸越大,能够承受的应力越小.由于晶粒和晶界两相的不均匀分布,晶粒和晶界中出现了不规则的应力分布,高应力主要集中在晶界处.1 380℃温度下,距板坯表面70 mm处试样中晶界承受的平均应力为9.91 MPa,晶粒承受的平均应力为7.01 MPa.随着拉伸温度的提升,晶粒组织平均尺寸增大,晶界面积减小,对变形的阻碍减弱,RVE-FEM模拟的屈服强度和抗拉强度降低.距板坯表面60 mm处试样的屈服强度从1 300℃的9.87 MPa减小到1 380℃的4.36 MPa,最大抗拉强度从12.51 MPa降低到4.49 MPa.在1 380℃温度时,随着试样位置从板坯表面10 mm深入至40 mm处,屈服强度由9.44 MPa降低到7.42 MPa,最大抗拉强度由10.75 MPa降低到9.10 MP.不同温度和取样位置下,RVE-FEM计算的应力-应变曲线与实测结果吻合.晶粒尺寸是抗拉性能的决定性因素,取决于初始凝固组织尺寸和拉伸温度.从板坯表层到中心,二次枝臂间距增大,在同一拉伸温度下,晶粒尺寸增大,尤其从板坯皮下10 mm至40 mm,晶粒长轴长度是关键因素.对于同一位置,随拉伸温度的提升,晶粒长轴和短轴长度均明显增大.
Elastoplastic deformation behavior of grains during tension of Q355B slab at high temperature
Taking the continuously cast Q355B slab in a domestic steel plant as the research object,the tensile tests were carried out at the temperatures of 1 300,1 340 and 1 380℃and the strain rate of 0.001 1/s on a Gleeble-3800 thermo-mechanical simulation tester.Based on the obtained grain morphology,representative volumetric elements of grains near the fracture were selected,and a finite element model(RVE-FEM)was established with the Ramberg-Osgood constitutive equation.Then,the deformation mechanism of the grain structure and the distribution patterns of the stress and strain during tension processes at high temperature were revealed.The results show that the closer to the fracture,the larger the average grain size is,and the smaller the stress it can bear.Because of the uneven distribution of grains and grain boundaries,the irregular distribution of stress appears in grains and at the grain boundary,and the high stress is mainly concentrated at the grain boundary.At the temperature of 1 380℃,the average stresses are 7.01 and 9.91 MPa in grains and at the grain boundary as the sample is at 70 mm below the slab surface.With the increase of the tensile temperature,the average size of grains enhances,the area of the grain boundaries reduces.It causes that the hindrance to deformation is weakened,and the yield and tensile strengths decline.At 60 mm below the slab surface,the yield strength and maximum tensile strength decrease from 9.87 to 4.36 MPa and from 12.51 to 4.49 MPa,respectively,as the temperature increases from 1 300 to 1 380℃.At the temperature of 1 380℃,the yield strength and maximum tensile strength decrease from 9.44 to 7.42 MPa and from 10.75 to 9.10 MPa,respectively,as the sample moves from 10 to 40 mm below the slab surface.The stress-strain curves calculated by RVE-FEM agree with the measured results at different temperatures and sampling locations.The grain size is a decisive factor for the tensile property,and it depends on the size of the initial solidification struc-ture and the tensile temperature.From the slab surface to the center,the secondary dendrite arm spacing increases.It causes that the grain size increases at the same tensile temperature.Particularly,from 10 to 40 mm below the sur-face,the length of the grain's long axis is the key factor.For the same sampling position,the lengths of the grain's long and short axes increase significantly with the increase of tensile temperature.

Q355B slabtensile test at high temperaturegrain morphologystress distributionfinite element simulation

禚朔、王卫领、赵阳、朱苗勇

展开 >

东北大学冶金学院,辽宁 沈阳 110819

辽宁材料实验室,辽宁 沈阳 110000

Q355B板坯 高温拉伸 晶粒形貌 应力分布 有限元模拟

国家重点研发计划资助项目国家自然科学基金资助项目国家自然科学基金资助项目中央高校基本科研业务专项资金资助项目

2021YFB370200452174306U20A20272N2225023

2024

钢铁
中国金属学会钢铁研究总院

钢铁

CSTPCD北大核心
影响因子:1.204
ISSN:0449-749X
年,卷(期):2024.59(4)
  • 32