首页|基于机器学习方法的HTPB推进剂力学性能预测研究

基于机器学习方法的HTPB推进剂力学性能预测研究

Mechanical properties prediction of HTPB propellants based on machine learning method

扫码查看
固体推进剂中AP颗粒的级配不同会导致力学性能相差巨大,为了探究AP颗粒的粒度值和质量分数对端羟基聚丁二烯(HTPB)推进剂力学性能的影响规律,采用机器学习的方法对推进剂的力学性能进行仿真预测,降低了实验成本并提高了预测效率.首先,对不同级配的HTPB推进剂进行拉伸试验,得到不同温度下抗拉强度和伸长率;其次,以拉伸试验结果为样本进行机器学习,分别构建了反向传播(Back Propagation,BP)神经网络、粒子群算法优化的反向传播(Particle Swarm Optimization Back Propagation,PSOBP)神经网络和遗传算法优化的反向传播(Genetic Algorithms Back Propagation,GABP)神经网络对推进剂的力学性能进行预测.结果表明,力学性能与颗粒级配的内在关系较为复杂,并非简单的线性关系.PSOBP和GABP可以用于预测不同级配下HTPB推进剂力学性能,并且GABP神经网络可以更好地预测推进剂的力学性能变化.
Different particle size distributions of AP particles in solid propellants can result in significant differences in mechan-ical properties.In order to investigate the influence of particle size and mass fraction of AP particles on the mechanical properties of hydroxyl-terminated polybutadiene(HTPB)propellants,the machine learning method is used to predict the mechanical properties of HTPB propellants,reducing experimental costs and improving prediction efficiency.Firstly,tensile tests were conducted on HTPB propellants with different particle size distributions to obtain the tensile strength and elongation at different temperatures.Secondly,machine learning was performed using the results of the tensile tests as samples,and three neural networks,namely back propagation(BP)neural network,particle swarm optimization back propagation(PSOBP)neural network,and genetic algorithms back propaga-tion(GABP)neural network,were constructed to predict the mechanical properties of the propellants.The results indicate that the re-lationship between mechanical properties and particle size distribution is complex and not simply linear.PSOBP and GABP can be used to predict the mechanical properties of HTPB propellants under different gradations,and the GABP neural network performs better in predicting variations in the mechanical properties of the propellants.

solid propellantsHTPBparticle gradationmachine learningneural networksmechanical property

程一哲、王春光、张恺宁、于蓓、王志军

展开 >

西安交通大学 航天航空学院,西安 710049

西安交通大学 复杂服役环境重大装备结构强度与寿命全国重点实验室,西安 710049

北京凌空天行科技有限责任公司,北京 100176

喀什地区电子信息产业技术研究院,喀什 844199

内蒙古航天红峡化工有限公司,呼和浩特 010076

展开 >

固体推进剂 HTPB 颗粒级配 机器学习 神经网络 力学性能

2024

固体火箭技术
中国航天科技集团公司第四研究院 中国宇航学会固体推进专业委员会

固体火箭技术

CSTPCD北大核心
影响因子:0.461
ISSN:1006-2793
年,卷(期):2024.47(1)
  • 21