首页|Peeling of Magneto-responsive Beams with Large Deformation Mediated by the Parallel Magnetic Field

Peeling of Magneto-responsive Beams with Large Deformation Mediated by the Parallel Magnetic Field

扫码查看
Elasto-capillarity phenomena are prevalent in various industrial fields such as mechanical engineering,material science,aerospace,soft robotics,and biomedicine.In this study,two typical peeling processes of slender beams driven by the parallel magnetic field are investigated based on experimental and theoretical analysis.The first is the adhesion of two parallel beams,and the second is the self-folding of a long beam.In these two cases,the energy variation method on the elastica is used,and then,the governing equations and transversality boundary conditions are derived.It is shown that the analytical solutions are in excellent agreement with the experimental data.The effects of magnetic induction intensity,distance,and surface tension on the deflection curve and peeling length of the elastica are fully discussed.The results are instrumental in accurately regulating elasto-capillarity in structures and provide insights for the engineering design of programmable microstructures on surfaces,microsensors,and bionic robots.

Magneto-responsive beamAdhesion and peelingSelf-foldingElasticaTransversality condition

Gongqi Cao、Zhangna Xue、Shiyang Liu、Yuchen Jin、Jianlin Liu

展开 >

College of Pipeline and Civil Engineering,China University of Petroleum(East China),Qingdao 266580,China

National Natural Science Foundation of ChinaNational Natural Science Foundation of ChinaNatural Science Foundation of Shandong ProvinceSpecial Funds for the Basic Scientific Research Expenses of Central Government Universities

1237202712211530028ZR2020110500382472022X03006A

2024

固体力学学报(英文版)
中国力学学会

固体力学学报(英文版)

EI
影响因子:0.214
ISSN:0894-9166
年,卷(期):2024.37(3)