Abstract
By incorporating two different fracture mechanisms and salient unilateral effects in rock materials,we propose a thermo-mechanical phase-field model to capture thermally induced fracture and shear heating in the process of rock failure.The heat conduction equation is derived,from which the plastic dissipation is treated as a heat source.We then ascertain the effect of the non-associated plastic flow on frictional dissipation and show how it improves the predictive capability of the proposed model.Taking advantage of the multiscale analysis,we propose a phase-field-dependent thermal conductivity with considering the unilateral effect of fracture.After proposing a robust algorithm for solving involved three-field coupling and damage-plasticity coupling problems,we present three numerical examples to illustrate the abilities of our proposed model in capturing various thermo-mechanically coupled behaviors.