首页|Static recrystallization behaviors and mechanisms of 7Mo super-austenitic stainless steel with undissolved sigma precipitates during double-stage hot deformation

Static recrystallization behaviors and mechanisms of 7Mo super-austenitic stainless steel with undissolved sigma precipitates during double-stage hot deformation

扫码查看
Static recrystallization(SRX)behaviors and corresponding recrystallization mechanisms of 7Mo super-austenitic stainless steel were studied under different deformation conditions.The order of influence of deformation parameters on static recrystallization behaviors,from high to low,is followed by temperature,first-stage strain and strain rate.Meanwhile,the effect of holding time on static recrystallization behaviors is significantly controlled by temperature.In addition,with the increase in temperature from 1000 to 1200 ℃,the static recrystallization mechanism evolves from discontinuous static recrystallization and continuous static recrystallization(cSRX)to metadynamic recrystallization and cSRX,and finally to cSRX.The cSRX exists at all temperatures.This is because high stacking fault energy(56 mJ m-2)promotes the movement of dislocations,making the deformation mechanism of this steel is dominated by planar slip of dislocation.Large undissolved sigma precipitates promote static recrystallization through particle-stimulated nucleation.However,small strain-induced precipitates at grain boundaries hinder the nucleation of conventional SRX and the growth of recrystallized grains,while the hindering effect decreases with the increase in temperature.

7Mo super-austenitic stainless steelDouble-stage hot deformationConventional static recrystallizationMetadynamic recrystallizationStrain-induced precipitation

Shi-guang Xu、Jin-shan He、Run-ze Zhang、Fu-cheng Zhang、Xi-tao Wang

展开 >

Collaborative Innovation Center of Steel Technology,University of Science and Technology Beijing,Beijing 100083,China

State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,Hebei,China

Shandong Provincial Key Laboratory for High Strength Lightweight Metallic Materials,Advanced Materials Institute,Qilu University of Technology(Shandong Academy of Science),Jinan 250353,Shandong,China

National Natural Science Foundation of ChinaInnovation Pilot Project for Fusion of Science,Education and Industry(International Cooperation)from Qilu University of Tech

U18102072020KJC-GH03

2024

钢铁研究学报(英文版)
钢铁研究总院

钢铁研究学报(英文版)

CSTPCD
影响因子:0.584
ISSN:1006-706X
年,卷(期):2024.31(2)
  • 41