首页|面向智能烧结的机尾断面烧结矿FeO预测研究

面向智能烧结的机尾断面烧结矿FeO预测研究

扫码查看
针对烧结工艺FeO预测准度问题,提出一种基于机器学习的预测模型.通过对机尾断面温度数据的采集和处理,建立包含多个特征的数据集.采用基于MIV(平均影响值)的特征选择方法,筛选出对预测模型权重占比较高的特征.使用Bi-LSTM(双向长短时记忆神经网络)算法对生产工艺数据进行训练和测试,得到高精度的预测模型.通过实验验证了该模型的预测效果,并与其他神经网络模型方法进行了比较,比较结果表明该模型具有较高的预测精度和实用性.在企业误差允许的范围内,准确率达90.2%,因此可以为智能烧结技术的应用和烧结质量的控制和优化提供重要的参考.
Research on FeO prediction of sintered ore in machine tail section for intelligent sintering
Aiming at the prediction accuracy of FeO in sintering process,a prediction model based on machine learning was proposed.By collecting and processing the temperature data of the tail section,a data set containing multiple features was established.The feature selection method based on MIV(Mean Impact Value)was used to screen out the features that account for a higher weight of the prediction model.The Bi-LSTM(bidirectional long-short-term memory neural network)algorithm was used to train and test the production process data to obtain a high-precision prediction model.The prediction effect of the model was verified by experiments,and compared with other neural network model methods,the comparison results show that the model has high prediction accuracy and practicability.Within the allowable range of enterprise error,the accuracy rate reaches 90.2%,so it can provide an important reference for the application of intelligent sintering technology and the control and optimization of sintering quality.

intelligent sinteringprediction modelFeO content of sinterbig dataneural network

张学锋、闻亦昕、熊大林、龙红明

展开 >

安徽工业大学计算机科学与技术学院,安徽马鞍山 243032

首钢自动化信息研究院,河北唐山 063000

安徽工业大学冶金工程学院,安徽马鞍山 243032

智能烧结 预测模型 烧结矿FeO含量 大数据 神经网络

安徽省教育厅重点实验室项目安徽省高等学校自然科学研究项目

TZJQR007-20232022AH050290

2024

钢铁研究学报
中国钢研科技集团有限公司

钢铁研究学报

CSTPCD北大核心
影响因子:0.997
ISSN:1001-0963
年,卷(期):2024.36(5)
  • 33