首页|基于数据驱动的Ti微合金钢力学性能预测模型开发及应用

基于数据驱动的Ti微合金钢力学性能预测模型开发及应用

扫码查看
微合金钢由于其低成本和优异的性能引起了人们的广泛关注,大量应用于汽车、建筑等行业.热轧钢材性能预测是钢铁智能制造的主要方向之一,对提高产品性能稳定性意义重大.因此,研究微合金钢的力学性能预测对优化生产工艺、改善产品质量、提高生产效率具有重要的意义.基于微合金钢工业大数据、轧制工艺理论和统计学原理开发了聚类、异常值剔除、线性归一化等数据预处理方法,结合析出热力学计算有效Ti含量,并采用基于前向选择的方法进行特征筛选.基于随机森林建立微合金钢力学性能预测模型并采用粒子群优化算法对随机森林的超参数进行优化,实现Ti微合金钢力学性能的高精度预测.结果表明:模型屈服强度和抗拉强度在相对误差±6%的范围内命中率为96.8%和98.9%;伸长率在绝对误差±4%的范围内命中率为97.9%.经验证,所建立模型符合物理冶金学规律,并在现场在线预测中取得了较好的模型精度.
Development and application of a data-driven model for predicting mechanical properties of Ti microalloyed steel
In recent years,microalloyed steel has garnered widespread attention due to its low cost and excellent performance,finding extensive application in numerous industries such as automotive and construction.The prediction of hot-rolled steel properties is a major direction in steel intelligent manufacturing and holds great significance for enhancing the stability of product performance.Consequently,predicting the mechanical properties of microalloyed steel is highly significant for optimizing the production process,improving product quality,and increasing production efficiency.Data preprocessing methods such as clustering,outlier rejection,and linear normalization were developed based on microalloy steel industrial big data,rolling process theory,and statistical principles.Combined with precipitation thermodynamics,the effective Ti content was calculated,and a forward selection-based method was employed for feature screening.The mechanical property prediction of microalloyed steel is established based on random forest,and the particle swarm optimization algorithm is utilized to optimize the hyperparameters of the random forest,thereby achieving high-precision prediction of the mechanical properties of Ti microalloyed steel.The results indicate that the model has a hit rate of 96.8%for yield strength and 98.9%for tensile strength within a relative error of±6%,and the elongation has a hit rate of 97.9%within an absolute error of±4%.It is verified that the developed model conforms to the laws of physical metallurgy and achieves good model accuracy in online prediction in the field.

data preprocessingrandom foresteffective Ti contentparticle swarm optimization algorithmme-chanical properties prediction

何宇挺、吴思炜、曹光明、罗登、王厚昕、刘振宇

展开 >

东北大学轧制技术及连轧自动化国家重点实验室,辽宁 沈阳 110819

湖南华菱湘潭钢铁有限公司,湖南 湘潭 411101

中信金属股份有限公司,北京 100004

数据预处理 随机森林 有效Ti含量 粒子群优化算法 力学性能预测

2024

钢铁研究学报
中国钢研科技集团有限公司

钢铁研究学报

CSTPCD北大核心
影响因子:0.997
ISSN:1001-0963
年,卷(期):2024.36(12)