首页|对称群S4中的S-拟正规嵌入子群和几乎SS-嵌入子群研究

对称群S4中的S-拟正规嵌入子群和几乎SS-嵌入子群研究

扫码查看
为探讨四次对称群S4的所有S-拟正规子群、S-拟正规嵌入子群和几乎SS-嵌入子群,结合置换的计算方法,利用其定义和相关引理得出了相应的结果.结果显示:S4的S-拟正规子群为N,K4,A4,S4;S4的S-拟正规嵌入子群有 N1,N11,N12,N13,N14,K4,N26,N27,N28,A4,S4;S4 的几乎 SS-嵌入子群有 N1,N2,N3,N4,N5,N6,N7,N11,N12,N13,N14,K4,N2,N23,N24,N25,N26,N27,N28,A4,S4.
Study of S-quasi normally Embedded Subgroups and Nearly SS-embedded Subgroups in the Symmetry Group S4
In order to investigate all S-quasinormal subgroups,S-quasinormally embedded subgroups and near-ly SS-embedded subgroups of the quartic symmetry group S4,the corresponding results are obtained by using the definition and correlation lemma,combined with the calculation method of permutation.The results show that the S-quasinormal subgroups of S4 are N1,K4,A4,S4;the S-quasinormally embedded subgroups of S4 are N1,Ni1,N12,N13,N14,K4,N26,N27,N28,A4,S4;the nearly SS-embedded subgroups of S4 are N1,N2,N3,N4,N5,N6,N7,N11,N12,N13,N14,K4,N22,N23,N24,N25,N26,N27,N28,A4,S4.

S4S-quasinormalS-quasinormally EmbeddedNearly SS-embedded

张佳、朱丽羽、黄潇

展开 >

西华师范大学数学与信息学院,四川南充 637009

S4 S-拟正规 S-拟正规嵌入 几乎SS-嵌入

2024

贵州师范学院学报
贵州师范学院

贵州师范学院学报

CHSSCD
影响因子:0.249
ISSN:1674-7798
年,卷(期):2024.40(6)