首页|改进的DeepLabV3+指针式仪表图像分割算法

改进的DeepLabV3+指针式仪表图像分割算法

Improved image segmentation algorithm of DeepLabV3+ pointer meter

扫码查看
针对现有的仪表自动化读数算法占用空间大、推理速度较慢以及不能有效分割图像中密集细小目标的问题,提出改进的DeepLabV3+指针式仪表分割算法.首先以轻量化的 MobileNetV2来构建网络主干达到降低参数量和推理权重、提高检测速度的目的.其次通过分块并归策略设计CSP-ASPP结构,在保证网络性能的同时降低参数量.之后使用改进后的SKFF模块通过自注意力机制以非线性方式融合多尺度特征,将原网络解码器中的二尺度特征融合变为四尺度特征融合.最后使用交叉熵损失联合加权的Dice损失作为网络的总损失函数,解决仪表分割中各类别像素分布不均的问题.最后通过实验证明,改进后的DeepLabV3+算法在仪表分割数据集上的平均交并比(mIoU)和平均像素准确率(mPA)达到了89.3%和94.8%,相对原网络分别提高了0.7%、0.6%,参数量和推理权重却仅有原网络的约7%,同时在GPU和CPU上的推理速度分别达到91和16 fps,解决了嵌入式设备部署困难的问题,达到了实时检测的要求,提高了仪表自动化读数的效率.
Aiming at the problems that the existing automatic instrument reading algorithm occupies a large space,the reasoning speed is slow,and it cannot effectively segment the dense and small objects in the image,an improved DeepLabV3+ pointer instrument segmentation algorithm is proposed.Firstly,MobileNetV2 is used to build the network backbone to reduce the amount of parameters and inference weight,and improve the detection speed.Secondly,the CSP-ASPP structure is designed through the block merge strategy to reduce the amount of parameters while ensuring the network performance.Then,the improved SKFF module is used to fuse multi-scale features in a non-linear manner through the self-attention mechanism,and the two-scale feature fusion in the original network decoder is changed to four-scale feature fusion.Finally,the Dice Loss jointly weighted by cross-entropy loss is used as the total loss function of the network to solve the problem of uneven distribution of pixels in each category in instrument segmentation.Finally,it is proved by experiments that the improved DeepLabV3+ average intersection ratio(mIoU)and mean pixel accuracy(mPA)reached 89.3%and 94.8%,respectively,increased by 0.7%and 0.6%compared with the original network,but the amount of parameters and inference weight is only about 7%of the original network,while the inference speed on GPU and CPU reaches 91 and 16 frames/s,respectively.Meet the requirements of real-time detection,which solves the problem of difficult deployment of embedded devices and improves the efficiency of automatic instrument reading.

semantic segmentation of pointer metersDeepLabV3+lightweightblock-wise aggregationmulti-scale feature fusionDice Loss

杨武、胡敏、常鑫、赵昕宇、余华云

展开 >

长江大学计算机科学学院 荆州 434023

指针式仪表图像分割 DeepLabV3+ 轻量化 分块并归 多尺度特征融合 Dice Loss

国家自然科学基金

61440023

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(1)
  • 6