首页|融合2维卷积与注意力以预测PM2.5浓度的S-TCN模型

融合2维卷积与注意力以预测PM2.5浓度的S-TCN模型

S-TCN model fusing 2D convolution and attention to predict PM2.5 concentrations

扫码查看
针对传统预测模型对PM2.5 浓度预测精度较低、可解释性差的缺陷,提出一种融合2维卷积层(2D convolution)和注意力层的时空卷积网络预测模型(spatio-2D-temporal convolutional networks attention,S-2D-TCNA).选取北京市2014年5月1日~2015年4月30日的36个监测站点逐小时空气质量和气象数据,通过对多个站点时空相关性分析,将符合相关性阈值的监测站数据输入至卷积进行升维再降维的处理方式,得出具有时空序列的输入特征;将注意力融入时间卷积网络预测模型,用于预测未来1 h的中心监测站PM2.5 浓度.在模型训练优化参数过程中,通过Adam来训练深度学习模型的参数,然后使用贝叶斯优化来调整模型的超参数,这种方法能找到模型的最佳参数,使其均方根误差、平均绝对误差分别减少3.791%和5.576%,拟合优度增大0.67%;在质量方面,所提出的S-Conv2D-TCNA模型均方根误差、平均绝对误差和拟合优度分别为16.020 9、10.610 0和0.942 8,该预测模型在准确性和稳定性方面优于基线模型.结果表明,该预测模型空气污染的预警、区域预防和控制方面大有可为.
Aiming at the shortcomings of the traditional prediction model for PM2.5 concentration prediction with low accuracy and poor interpretability,a spatio-temporal convolutional network prediction model integrating 2D convolution and attention(S-2D-TCNA)layers is proposed.Hourly air quality and meteorological data from 36 monitoring stations in Beijing from May 1,2014,to April 30,2015,are selected.Through the analysis of spatio-temporal correlations among multiple stations,the monitoring station data that meet the correlation threshold are inputted into a convolutional network that adopts a dimensionality expansion and reduction approach to obtain input features with spatio-temporal sequences.Attention is incorporated into the Temporal convolutional network model for predicting the PM2.5 concentrations at the central monitoring station for the next hour.In the process of optimizing the parameters for model training,the parameters of the deep learning model are trained by Adam,and then Bayesian optimization is used to adjust the hyper-parameters of the model,and this method finds the best parameters of the model,which reduces the root mean squared error and mean absolute error by 3.791%and 5.576%,respectively,and increases the goodness of fit by 0.67%.In terms of quality,the S-Conv2D-TCNA model has a mean root mean square error,mean absolute error and goodness of fit are 16.020 9,10.610 0 and 0.942 8,respectively,and this prediction model is better than the baseline model in terms of accuracy and stability.The results show that the forecasting system is promising in the early warning,regional prevention,and control of air pollution.

spatio sequenceattentiontemporal convolutional network(TCN)PM2.5 concentration

李春辉、张瑛琪、孙洁

展开 >

华北理工大学电气工程学院 唐山 063210

河北医科大学第一医院(急诊科) 石家庄 050031

时空序列 注意力 时间卷积网络(TCN) PM2.5浓度

2020年河北省省级科技计划

20477703D

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(1)
  • 8