首页|多尺度Transformer的在线更新无锚框工件跟踪方法研究

多尺度Transformer的在线更新无锚框工件跟踪方法研究

扫码查看
针对工业场景目标工件跟踪任务精度低、失败率高的问题,提出了多尺度Transformer在线更新的工件跟踪算法.首先,采用Transformer特征金字塔结构,融合多层次特征信息,以实现鲁棒的对目标表观建模;其次,使用Transformer模块对高级语义信息进行特征融合,使得网络模型专注于目标工件本身;然后,提出了基于排序的交并化(IoU)损失函数优化策略,有效地抑制干扰物对跟踪器影响;最后,设计一种在线更新策略更新目标模板,增强网络的鲁棒性.实验结果表明,在VOT-2018上准确率和失败率分别比基准跟踪器提高3.8%和4.1%,且能保持53 fps的实时跟踪速度;在LaSOT数据集上精度与成功率别为0.578和0.573,均优于基准跟踪器.通过CCD工业相机采集视频序列验证算法可以准确且鲁棒的跟踪目标工件.
Research on online updating anchor-free frame workpiece tracking method for multiscale Transformer
A multi-scale Transformer online update workpiece tracking algorithm is proposed to address the issues of low accuracy and high failure rate in industrial scene target workpiece tracking tasks.Firstly,a Transformer feature pyramid structure is adopted to fuse multi-level feature information to achieve robust apparent modeling of the target;Secondly,using the Transformer module for feature fusion of advanced semantic information enables the network model to focus on the target artifact itself;Then,an IoU Loss function optimization strategy based on sorting is proposed to effectively suppress the influence of the interference on the tracker;Finally,design an online update strategy to update the target template and enhance the robustness of the network.The experimental results show that the accuracy and failure rate on VOT-2018 are 3.8%and 4.1%higher than the benchmark tracker,respectively,and can maintain a real-time tracking speed of 53 fps;The accuracy and success rate on the LaSOT dataset are 0.578 and 0.573,both of which are better than the benchmark tracker.The algorithm proposed in this paper can accurately and robustly track the target workpiece by capturing video sequences using a CCD industrial camera.

target trackingfeature pyramidTransformerloss functiononline update

夏代洪、徐健、郑自立、赵一剑、刘高峰

展开 >

西安工程大学电子信息学院 西安 710048

目标跟踪 特征金字塔 Transformer 损失函数 在线更新

陕西省科技厅资助项目西安市科技局项目

2018GY-173GXYD7.5

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(1)
  • 4