首页|基于改进ResNet18的干香菇等级识别

基于改进ResNet18的干香菇等级识别

扫码查看
为解决干香菇等级识别技术复杂及识别精度不高的问题,提出了一种基于残差神经网络ResNet18的干香菇等级识别方法.首先将传统的ResNet18中Stem的7×7卷积层替换为3个3×3卷积层串联,保证在感受野保持不变的情况下进一步减小计算量;其次针对残差块中线性变换和非线性变换不足的问题,引入融合非对称卷积和h-swish激活函数,增加了模型的复杂性,使其能够进行更深层次的特征学习;最后在ResNet18骨干网络中引入高效通道注意力机制,加强模型提取特征的能力;实验结果表明,改进后的ResNet18网络模型准确度达97.04%,相比ResNet18网络模型方法提升了4.81%,且性能优于VGG16、MobileNetV2、DenseNet121、ResNet34等网络模型方法,可提高干香菇等级的识别精度,单幅图像的检测时间为5.91 ms,对干香菇智能分拣过程中的等级识别具有借鉴意义.
Dried shiitake mushroom grade recognition based on improved ResNet18
To solve the problems of complexity and low recognition accuracy of dried shiitake mushroom grade recognition technology,a method of dried shiitake mushroom grade recognition based on residual neural network ResNet18 is proposed.Firstly,the 7×7 convolutional layer of Stem in the traditional ResNet18 is replaced by three 3×3 convolutional layers in series,which ensures that the computational amount is further reduced while the sensory field remains unchanged.Secondly,to address the problem of insufficient linear and nonlinear transformations in the residual block,fused asymmetric convolution and h-swish activation function are introduced,which increases the complexity of the model and enables it to carry out a deeper level of feature learning.Finally,an efficient channel attention mechanism is introduced into the ResNet18 backbone network to strengthen the ability of the model to extract features.The experimental results show that the improved ResNet18 network model has an accuracy of 97.04%,which is 4.81%higher compared to the ResNet18 network modeling method,and outperforms VGG16,MobileNetV2,DenseNet121,ResNet34 and other network model methods,which can improve the recognition accuracy of dried shiitake mushroom grades,and the detection time of a single image is 5.91 ms,which is useful for grade recognition in the intelligent sorting process of dried shiitake mushrooms.

dried shiitake mushroom gradingmachine visionResNet18efficient channel attention mechanism

王莉、董鹏豪、王瞧、牛群峰

展开 >

河南工业大学电气工程学院 郑州 450000

河南工业大学粮食信息处理与控制重点实验室 郑州 455000

干香菇分级 机器视觉 ResNet18 高效通道注意力机制

河南工业大学创新基金河南省科技研究计划

2022ZKCJ032013000210100

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(1)
  • 1
  • 16