首页|基于深度学习的密集物料检测方法

基于深度学习的密集物料检测方法

扫码查看
工业密集物料检测对计数精度有着较高的要求.对于检测样本疏密程度较均匀且互相无遮盖的情况,传统方法检测效果尚好,但是针对疏密分布不均匀或者样本互相之间存在遮盖的场景误识别的情况便较为严重.因此,为了提高检测的准确率与计数的精度,在HRNet的基础上进行改进,提出一种自注意力多尺度融合模型,主模型使用 HRNet在不同分辨率特征图之间进行特征交互融合,同时在高分辨率特征图上添加自注意力机制加强模块增强全局特征提取.其次,针对物料中包含少数大料但密集检测检测效果较差的情况,采用了双通道物料大小判断执行机制,添加了YOLO框架对物料大小分类进行检测.最后,数据集均由X射线无损检测设备进行采集标注,在此数据集上模型的预测精度达到了96.7%,相较于其他模型有较大的提升.
Dense material detection method based on deep learning
Industrial intensive material inspection has high requirements for counting accuracy.Traditional methods perform well in cases where the density of detected samples is relatively uniform and they do not overlap.However,in scenarios with uneven density distribution or overlapping samples,the issue of misrecognition becomes more severe.To enhance detection accuracy and counting precision,this study improves upon the HRNet architecture and proposes a self-attention multi-scale fusion model.The main model employs HRNet for feature interaction fusion among different resolution feature maps and enhances global feature extraction by adding a self-attention mechanism to high-resolution feature maps.Furthermore,to address situations where the inspection performance is poor for materials with few but large components,a dual-channel material size determination mechanism is introduced,utilizing the YOLO framework for material size classification detection.Lastly,the datasets used in this study are collected and annotated using X-ray non-destructive testing equipment.The proposed model achieves a prediction accuracy of 96.7%on this dataset,demonstrating improvement compared to other models.

dense inspectionself-attention mechanismdual-channel decision mechanismX-ray non-destructive testing

朱希、李燕、施林枫

展开 >

南京信息工程大学自动化学院 南京 210044

密集检测 自注意力机制 双通道判断机制 X射线无损检测

南京信息工程大学创新创业基金江苏省研究生科研与实践创新计划项目

WXCX202125SJCX23_0369

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(1)
  • 7