首页|基于分数混合阶的交叠组合稀疏全变分HFOGSTV去噪模型

基于分数混合阶的交叠组合稀疏全变分HFOGSTV去噪模型

扫码查看
针对全变分(TV)模型引起的阶梯效应,造成图像出现块状伪影的问题,提出了基于分数混合阶的交叠组合稀疏正则项全变分(HFOGSTV)去噪模型.考虑到交叠组合稀疏正则项与分数阶微分能够抑制全局以及局部的块状伪影的特点,将二者引入TV模型,可以较好地抑制阶梯效应.并引入高阶微分,提高模型的去噪效率,构建了基于 HFOGSTV去噪模型.新模型采用交替方向乘子法(ADMM)分解为各个子问题进行依次迭代求解,并选择合适的参数.实验结果表明,HFOGSTV模型与非局部均值去噪(NLM)、TV和混合非凸高所交叠组合稀疏全变分(HNHOTV-OGS)模型相比,峰值信噪比(PSNR)分别提升7.2%、5.3%、1.9%,结构相似性(SSIM)分别提升6.6%、6.1%、3.4%,耗时分别减少89%、51%、45%,不仅有效抑制了阶梯效应,而且去噪效果更佳,运行时长大大降低.
Overlapping combined sparse total variation HFOGSTV denoising model based on fractional mixing order
Aiming at the problem of block-like artifacts in images caused by the staircase effect caused by total variation(TV)model,this paper proposes an overlapping combined sparse regular term denoising HFOGSTV model based on fractional mixing order.Considering that the overlapping combination of sparse regularization term and fractional differentiation can suppress global and local block artifacts,this paper introduces them into the TV model to better suppress the ladder effect.Furthermore,high-order differentiation is introduced to improve the denoising efficiency of the model,and an overlapping combined sparse regular term denoising HFOGSTV model based on fractional mixing order is constructed.The new model is decomposed into each subproblem by alternating direction multiplier ADMM method,and the appropriate parameters are selected.The experimental results show that compared with the NLM,TV,and HNHOTV-OGS models,the PSNR of the HFOGSTV model increases by 7.2%,5.3%,and 1.9%,respectively,and the SSIM increases by 6.6%,6.1%,and 3.4%,respectively,while the running time decreases by 89%,51%,and 45%,respectively.It not only effectively suppresses the staircase effect,but also has better denoising effect and greatly reduces the running time.

image denoisingoverlapping combination sparsefractional differentiationalternating direction multiplier algorithm

杨传兵、周先春、陈楷、张洁

展开 >

南京信息工程大学人工智能学院 南京 210044

温州市平阳县气象局 温州 325499

图像去噪 交叠组合稀疏 分数阶微分 交替方向乘子算法

国家级大学生创新创业训练计划支持项目南京信息工程大学大学生创新创业训练计划项目

202310300036ZXJDC202310300326

2024

国外电子测量技术
北京方略信息科技有限公司

国外电子测量技术

CSTPCD
影响因子:1.414
ISSN:1002-8978
年,卷(期):2024.43(2)
  • 16